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dynamically relevant conservation laws governing failure and energy release/absorption at the failure
boundary and in the surrounding medium, so that in a fundamental sense these models are ad-hoc.
Further, examination of theoretical representations of the seismic radiation from earthquakes that employ
the divergence of changes in the stress within the medium as a source term in the equations of motion
(such as the "stress glut model"), are shown to be without a rational physical basis and to have no mean-
ingful relationship to the dynamics or kinematics of spontaneous failure.

In the present study wedevelopan approach that incorporates the (nonlinear) conservation relations
on the failure surface, as well as those appropriate in the surrounding linear zone, to generate a Greens
function integral equation describing both the failure growth and the (interacting) seismic radiation field.
The method involves the explicit decomposition of total stress-displacement fields into dynamic and
equilibrium parts, with the latter dependent on time because of the growth of a new boundary correspond-
ing to the failure zone boundary within the prestressed medium; with this boundary growth necessitating
a time dependent readjustment of the prestress state to maintain equilibrium. It is shown that the time
changes in the equilibrium fields outside the failure zone give rise to an "equivalent force term" in the
equations of motion in the linear zone corresponding to the inertial effect of time dependent changes in
the equilibrium displacement field. Thus the "proper" equivalent force term in the equations of motion in
the linear zone is this inertial term and not the divergence of the stress field, either outside or inside the
failure zone. 1he Green's integral equation, arising from the equations of motion and boundary condi-
tions (conservation relations) on the growing failure surface, show that there are three source effects that
mitigate the seismic radiation field, in particular a primary term resulting from the inertial effects involv-
ing the equilibrium displacement in the medium surrounding the failure zone (a volume relaxation effect)
plus secondary scattering effects from the failure surface and a final term involving energy absorption
along the failure boundary, which is required for its continued growth. It is pointed out that this latter
term can result in severe damping of the radiation field and is therefore of importance for accurate
representations of the seismic radiation from such sources. We also show that the Green's integral equa-
tion representing the seismic radiation field can be expressed in equivalent forms, in particular in a form
that is similar to that obtained earlier using an initial value formulation (eg. Archambeau and Minster,
1978) and also in the form of a combined stress pulse-dislocation source distributed along the failure
boundary. One advantage of the present formulation is that it precisely prescribes the time history and
spatial variability of the wave fields produced in terms of the failure zone growth rate, geometry and
material properties. It is also appropriate for the general case, that is for arbitrary prestress fields and
failure growth history and geometry. Therefore, a moment series expansion of the Green's integral
representation, based on the directly formulated integral equation, or any of its equivalents, will produce
moment coefficients that are analytically related to the fun r tal parameters of the failure process.
Thus the results of this study provide a basis for inference of -. ,' urce physics, as well as a physically
based predictive capability for earthquake sources.
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I. Introduction

The essence of a kinematical moment tensor representation of earthquake seismic radiation (as

opposed to a dynamical representation) can be phrased quite simply. In particular, the source is con-

sidered to be representable by an equivalent body force term in the equations of motion, so that one

assumes that

p at2Uk - alt = fk

can represent the source effect in the equation of motion, with fk an equivalent body force distributed over

a "source volume" and of a form which will give rise to a radiation field equivalent to that of the actual

source. It is also required, in effect, that the "source volume" be replaceable by an elastic region in which

the usual linear Green's function representation can be used. In this context a dislocation equivalent to

spontaneous failure in a stressed solid (that is failure resulting in an earthquake) can be viewed as a

choice of an equivalent body force that is distributed over a planar surface within the medium. (That is,

the equivalent body force has a delta function form with a magnitude that is usually taken to be propor-

tional to an imposed displacement offset across the singular "dislocation plane".) Thus, the nonlinear

effects that may actually occur within the source volume are simulated by an equivalent force f acting

within the region or along its boundary. In this case the dynamic displacement field can be represented

by:

t

u.(r,t) = 9- dto fk(ro,to) G'(r,t;ro,to) dro
o vo

where Gn(r,t;rOto) represents the Green's tensor describing elastic wave propagation in the medium and

Vo is the entire volume where fk is non-zero (See for example Morse and Feshbach, 1953).

An example of an expansion for u in terms of moments of f may be obtained by formally expanding

the Green's tensor in a Taylor's series in the source coordinates ro (e.g. Stump and Johnson, 1982), so

that:

-I1



-L .(r.L0O, xrlxe) . X 0)

where summation is implied for the repeated coordinate indices I1... ,ln,, and Gm,... 1. is evaluated at ro 0

(the origin of the source coordinates), with

t -) axe)~ I~(~~r~ IrenO

Using this expansion for G.' in the GrLen's function representation for urn then gives+

u.(rt) -L f Gkn,..j,(r,t:O,t0 ) Midi... ( ) dto

where

Mkl,. .(tO) = fX°) x% "xe fk(ro,to) dr°
V.

is the (n + 1) th order moment tensor.

Generally the lowest order term (n = 1), corresponding to a simple point double couple or disloca-

tion, is used and in this case:

t

um(r,t) = J Gm(r,t;O,tO) MkI(to) dto
0

Clearly, all of this is completely formal with no actual physical description of the source involved.

Further, these representations follow from the assumption that a simple distributed equivalent force, act-

ing in an elastic zone replacing the true physical source, can actually represent (be equivalent to) an earth-

quake source. That this is not necessarily so can be appreciated by reflecting on the distinct possibility

that the true equivalent force may depend explicitly on the dynamic displacement field itself or on its

+The n = 0 term in the expansion for U vanishes by die w&miseavation of momentum when there am no external forces or

torques on the system.
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space-time derivatives. In addition, in the Stump-Johnson moment expansion, it is assumed that the

series expansion for G", and resulting moment series expansion for urn, exist and do not diverge. While it

may seem intuitively plausible that the latter assumptions are valid, it is also likely that expansions of this

type would be slowly convergent, and certainly extremely so for a complex earthquake of large dimen-

sions.

In a somewhat similar approach, Archambeau (1964, 1968) considered the expansion of an

equivalent force representation in moments, except that, rather than formally expanding the Green's func-

tion as a series, the equivalent force was expanded as a (vector) harmonic series and the Green's function

integral was evaluated as a moment series expansion. While this approach has the likelihood of produc-

ing a more rapidly convergent moment series, than would be produced by the expansion of the Green's

function, it is (as was pointed out in the original development) purely formal with no direct relationship to

the actual source physics.

Therefore, aside from these mathematical considerations, the essential question to be addressed is:

What is the proper equivalent force term in a moment expansion, and in particular is there an equivalent

force that can be related to the actual physical source. If an analytical relationship can be established,

then the relationship of moment tensor observations to the physics of the source can be established.

As will be shown, the complete Green's function representation of an earthquake source results in

an integral equation that can only approximately have the simple equivalent force form. But even assum-

ing the earlier formalism to be approximately valid and a useful representation for inversion, before the

formal inversion results can properly be interpreted it is still necessary to be able to relate the moment

tensor components to the seurce physics in a rigorous fashion.

In regard to the question of the physical significance of the moment tensor, Gilbert (1970) argued on

intuitive grounds that the equivalent body force equivalent could be expressed in terms of the (static)

stress drop resulting from an earthquake in the form

fk- - Tk

. . .......... . .. . . . . . . - = m~w . m l mnm unn m l luu -



where Ta is the stress change (throughout the earth) accompanying the seismic event. In this case, the

second order moment tensor Mi, is just T . Similarly, Backus and Mulcahy (1976a) attempted to provide

a basis for the choice of fk, and in so doing introduced the idea of a "stress glut". In terms of the stress

glut tensor, this equivalent force is

where r1 denotes the "stress glut". For an earthquake source. 11 is taken as the difference between the

true physical stress, Si, and a "model stress". C&; with this latter stress function corresponding, within the

failure zone, to the spatial continuation of the linear stress from outside the nonlinear failure zone into

this zone. Hence, r'k is the equivalent of a "stress drop" within the failure zone and, further, the second

order moment tensor Mk is equal to rFk in this case. However, rF, by virtue of its definition, is zero in the

surrounding linear zone, co that while Gilbert's equivalent is non-zero everywhere, the stress glut

equivalent is non-zero only within the failure zone of an earthquake.

In this paper we will show that the moment tensor is actually fundamentally related to time changes

in the instantaneous equilibrium displacement field that occurs in the medium surrounding a failure zone,

and that an interpretation of the moment tensor can be obtained in terms of changes in this vector field.

Furthermore, we show that the changes in the equilibrium displacements can be related, explicitly, to

failure zone shape, growth rate and material theological properties, as well as to the initial (tectonic)

stress in the medium. This relationship, as might be expected, is nonlinear in most of the iource parame-

ters, so that inference of physical parameters from the moment tensor is a nonlinear inversion problem.

In order to develop our results with clarity in the context of current usage, it is necessary to examine

the previous moment tensor derivations and interpretations in some detail. Initially, we will focus our

discussion on the original derivation given by Gilbert (1970), and the critique of this formulation by

Backus and Mulcahy (1976a), sincc many current interpretations derive from these considerations. In this

regard, we will show that the moment tensor cannot be related to a "stress drop" in the manner described

by Gilbert, and that the inclusion of gravitational effects, as described by Backus and Mulcahy in tWeir

-4-



critique of Gilbert's derivation, does not correct the problem. In fact, the changes in Gilbert's formula-

tion that are advocated by Backus and Mulcahy will be shown to lead to a null result; that is the source

term (and therefore the seismic radiation field) should vanish at all points and at all times in their formal

representation. Gilbert's source representation, on the other hand, can be shown to only include the very

small seismic effects due to gravity and density changes accompanying an earthquake.

In the development that follows in the next section we will first show why Gilbert's phcnomenolog-

ical moment tensor formulation is incorrect and why the argument involving inclusion of gravitational

effects, as advanced by Backus and Mulcahy, is similarly incorrect. We will also show that Backus and

Mulcahy's moment tensor representation, including the 'stress glut' representation, does not properly

represent the physics of a spontaneous seismic source, such as an earthquake, nor does it properly

represent an earthquake radiation field in an equivalent sense. We will then demonstrate that a basically

different approach is required in order to properly describe the physics of a spontaneous seismic source.

In particular, we will show how a spontaneous failure process is properly formulated dynamically and,

when so described, provides a non-trivial moment tensor that can be related to the physics of the source.

H. Gilbert's "Phenomenological" Moment Tensor Representation

Gilbert's (1970) original development of a moment tensor representation followed the essentially

intuitive approach that is still commonly evoked to model an earthquake; namely, it was assumed

(i) That the external body force term f in the equations of motion:

P a,2uk - DI.k - P fk

can be used to represent the (force) effects associated with an earthquake.

(ii) That the initial state of the medium (at t = 0) is described by:

uk(r,O) = aluk(r,O) = 0

Gilbert used equations of motion for a discrete system of particles and passed to the limit of a continuum for his final
results. In this discussion continum equations are used from the onset since use of the discrete system is neither neces-
sary nor particularly useful.



(iii) That the earthquake may be adequately represented, for the purposes of p-cdicting the normal

mode response of the planet, by a step function response; so in view of the first assumption:

fk(r,t) = Fk(r) H(t)

(iv) That 'the body force caused by the stress drop Ta is':

Fk(r) = -aTk

where the spatial stress drop is defined in terms of the stress after an earthquake, tf, and the

stress before an earthquake, ,rg), as:

Ti,(r) = g) -'tr ; t> 0

These assumptions appear eminently plausible at first sight. However, they lead directly to a con-

tradiction which arises from the fact that both tlk and tT satisfy the equations of equilibrium. That is:

a1Cg) = - 9p g ; rV 0 . (1)

[[t nkH = 0 ; r e v0

where the bracket notation applied to tj'nj on DV0 , the boundary of V0, denotes the change in the traction

across the boundary. Likewise:

ajt; - p gm ; r E V1
1

nl =0:r C aVI 
(2)

where pg. and pg represent the gravitational forces acting and where the boundary conditions express

continuity of tractions at (all) the medium boundaries. Here the field rT2 is defined over the volume V0

consisting of the entire volume of the planet, with aV0 representing its boundaries, while TO is defined

In addition to the free surface o" the planet, there are other boundaries within the earth where the elastic properties may
change discontinuously and which, therefore, must be accounted for as internal boundaries in V0 and V 1. However, these
can be omitted from explicit mention if we observe once and for all that the tractions are continuous at all such boundaries
and that at solid-solid boundaries the displacement is continuous, while on fluid-solid or fluid-fluid boundaries only the
normal component of the velocity is continuous. In the present context these boundaries and the conditions on them do not
change (to first order) before and after an earthquake, so the same conditions will always apply and am- to be assumed
throughout.

-6-



over V, consisting of the nterior of the planet outside the failure zone of the earthquake, and having

boundaries denoted by aVt, which includes the (newly formcd) failure zone boundary in addition to the

boundaries aVo, existing prior to the event."

Inside the failure zone we have

,:-, -p'f rr V'= VOV

t'nk - F t nk ; r E oV " (3)

where T, is any (residual) stress which may exist withiT the failure zone after the earthquake, while rj*' is

the final equilibrium stress in the elastic zone surrounding the failure zone and aV' denotes the failure

zone boundary. Here the symbol Odenotes the set theoretic difference. The regions V., V, and V" and

their boundaries are schematically illustrated in Figure 1.

It is important to emphasize the necessity of taking explicit account of the existence of the failure

zone and to express the equilibrium equations in each zone separately, with the appropriate boundary con-

ditions serving to connect the stress fields within the non-linear source region to those in the linear region

surrounding it (i.e. the rest of the earth). This necessity arises from two facts. First. the only change in

the boundaries wiihin the earth is the formation of a. failure zone boundary and, while there may be many

other boundaries along which material di scontinuities occur and where boundary conditions apply, this is

the only boundary at which non-negligible changes occur during an earthquake. Second, and most criti-

cal for the ensuing discussion, the failure zone defines a region of non-linear behavior during its forma-

tion, within which it is not possible to apply the usual lincar theory. As will be seen, part of the problem

with Gilbert's representation arises from the fact that he does not account for the existence of the failure

zone boundary and the associated boundary conditions and, in effect, assumes linearity everywhere

throughout the planet at all times, including within the failure zone. This particular problem a!so arises,

in . more direct fashion, in the equivalent source representation advocated by Backus and Mulcahy

(1976a,b) and will be discussed later.

-7-



In order to relate the description of equilibrium fields given in (1) through (3) to Gilbert's use of

equilibrium fields defined on the interior of the planet, we observe that the region over which Gilbert

defines the stress drop, in (iv), is denoted as V by him and corresponds to our region Vo (i.e. the entire

planet). To properly define a stress drop Tat over the entire interior of the planet it is necessary to define it

as:

T-t = TE) -TT ; r E V,

T' = rk; rV'=VoOVI} (4-a)

and to include the boundary conditions applicable on the failure zone boundary aV', in order to connect

the stress drop in V' with that outside the failure zone, in V,. This condition is simply,

Ttknj = Trnt ; r EV (4-b)

which equates the tractions at the boundary. Thus, while the tractions are continuous, the stress drop

components themselves may be discontinuous across V".

Now we can relate this stress drop definition to Gilbert's use of stress drop by simply setting the Tjk

defined in (iv) to be equal to one or the other of the expressions in (4-a), depending on whether the coor-

dinate point is in V, or V". This modification of Gilbert's definition can be thought of as an extension of

his definition, required in order that the failure zone region is explicitly (and correctly) "covered" with the

correct boundary conditions included. We shall show below, however, that this is not the main difficulty

with Gilbert's formi! rer :!ts, even though a proper definition of the failure zone equilibrium and boun-

dary condition, :ndamental to the correct formulation of the problem.

In this regard. 'z note from (1) and (2) that while Tip and TT are themselves different, because

they satisfy : different set of boundary conditions (one with the failure zone present, the other without it),

the divergences of these stresses can be related, since from (1) and (2):

II 
I k rI 

I



by simple subtraction of the equations of equilibrium. As indicated, tile relation applies over the region

exterior to the failure zone (V,). Now we see from Gilbert's assumption (iv) that the quantity in the

brackets is defined as the stress drop, and so the stress drop must satisfy the relation:

a T - [ gI) - p r V1  (5)

Here pgk represents the new gravitational force field acting after the earthquake, whereas Pgk ) is the field

before the event. The difference in these force fields is due to the redistribution of mass due to the earth-

quake, resulting in changes in density and associated changes in the gravitational acceleration. Gilbert

does not directly concern himself with gravitational effects. (He does not neglect gravity effects as

claimed by Backus and Mulcahy (1976a), he simply asserts that the body force equivalent of an earth-

quake is - j1Tj, and never observes that (5) is actually true.) However, if gravity effects are, in fact,

neglected in comparison with effects of tectonic origin, as is shown to be justified in the Appendix 1,

then:

a1Tl, = 0; r E V, . (6-a)

We also observe that the stress drop within the non-linear failure zone is also equal to the gravity

field change, that is:

,T, -g- reV',

and when gravity changes are ignored relative to tectonic effects, then we also have

ajTk = 0 ; r E V (6-b)

within the failure zone.

Therefore we see from (6) that, to the approximation in which neglect of the gravitational forces is

appropriate, the divergence of the stress drop is zero everywhcre. In terms of Gilbert's (equivalent)

'body force caused by the earthquake', as defined in (iv), we have that this quantity is also zero. That is,

we have:

-9 -



Fk(r) -- Tj = 0; r e V0 ,

ai'l, = well,

fk(r,t) = Fk(r) H(t) = 0 ; r F Vo ,

in view of (6).

Therefore the body force term used by Gilbert to derive the moment tensor representation is, in fact,

zero (or at least negligible) and the result derived from the normal mode representation using this

equivalent force does not represent an earthquake displacement field. In particular, Gilbert finds that the

displacement field due to a body force term of the form fk(r,t) = F,(r) H(t), with H(t) a step function, can be

put in the form

u(r,t) = sn)(r) {JdVo s (n)(r 0)" F(ro)I. [ - p( oQn)] (7)

where the s(n) are the normal mode displacement eigenfunctions for the entire "unperturbed" planet; that is

the planet without the failure zone boundary present within it. Here jsn) are the complex conjugates of the

mode functions, w., are the mode angular frequencies and Qn the associated dissipation function for each

mode. (For this result, the Q, are assumed to be much larger than unity so that dissipation is small.) This

expansion is forr:a.y correct if effects from the failure zone boundary are neglected and if it is applied in

the region V, (outside the nonlinear failure zone).

However, insertion of - a1Tlk for Fk in this representation, whether intuitively plausible or not, is ad

hoc and quite incorrect. In fact, as we have noted, if gravity effects are negligible relative to tectonic

effects (which is in fact true), then the divergence of the stress drop vanishes and so does the right side of

(7). Therefore, Gilbert's application of Gauss' theorem to the volume integral term involving the diver-

gence of the stress drop and subsequent approximations which lead to the widely used result (e.g. Geller,

1976; McCowan and Dziewonski, 1977; Dzicwonski and Gilbert, 1974; Gilbert, 1973; Gilbert and

Dziewonski, 1975; McCowan, 1976; Luh and Dziewonski, 1976):

-10-



OS -0o' C t
,In jn)J C2Qn 1I1 - cosC€O~tCxp [|- ---

u(r,t) = Isj(r) M I 1 2 (8)
(O

is without proper foundation and the result is incorrect. (Here Mi, is the "moment tensor", which in this

result equals the stress Tu,, while 4j(n) is the strain tensor associated with the complex conjugate displace-

ment eigenfunctions for the planet.) Basically, the error arises from the fact that the divergence of the

stress drop is not a proper equivalent body force for an eartiquake source, plausible ad hoc assertions to

the contrary. The fact that this equivalent force actually vanishes when gravity effects are neglected is

simply indicative of the impropriety of the assumption.

The expression in (8) is not, however, zero as would be expected. That is, since Fk = - a1Ti vanishes

(to the approximation in which gravity changes are neglected) and so causes (7) to give a null displace-

ment field result, one might certainly expect that any result derived from (7), such as (8), should also

vanish. This is not the case because, in deriving (8) from equation (7), Gilbert omits the surface integral

term over the failure zone boundary so that (8) represents only part of the solution (7). The pan neglected

(the surface integral term) exactly cancels the right side of (8), to give the (correct) null result or, if grav-

ity is not neglected, the displacement effects due to gravity field changes. That is, if we directly substi-

tute the divergence of the stress drop into Gilbert's equation (7), then we get:

u.(r,t) = sr1(r){ [p g" - p gkM- _ kn)dVo [ COS )nt exp(- t/2Q) (9)f k 0. (9

since the divergence of the stress drop has the form

atTtk= [p gk -p gk]

everywhere :n the planet, including inside the failure zone. Thus, when the divergence of the static stress

drop is used to represent the "equivalent force" due a spontaneous source like an earthquake, then the dis-

placement predicted will be negligibly small or zero and not representative of the seismic radiation field
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produced by the event.

Backus and Mulcahy (1976a) on the other hand argue that Gilbert's results are in error precisely

because of the neglect of gravity in defining a moment tensor. But this is not the reason that the result is

in error, as was already indicated above. In particular, Gilbert does not neglect gravity since he simply

assumes that the divergence of the stress drop is the equivalent force to be associated with an earthquake

and, once this is done, gravity effects are actually implicitly included. In fact, as we have shown in equa-

tion (9), the true consequence of Gilbert's assumption is that he actually should obtain only that part of

the displacement due to an earthqvake that is associated with gravitational field changes. Further, as will

be directly demonstrated, the formulation suggested by Backus and Mulcahy gives a null result when

gravity is included in the way they advocate.

In particular, if the gravitational changes are included, as suggested by Backus and Mulcahy (1976a,

p. 346), by defining a gravitational stress tensor (Gij) such that

p gj = aiGij ,

where

Gij = (8tG)- 1 (gkgkiij - 2gigj)

thcn the equilibrium equations for the initial and final states, equations (1), (2) and (3), have the form:

Ltkt0) + G) = 0: r ev 1
a(1) + Gg'k = 0 ; r , V " (10)

a,[ l, + G,] =0; r Vo OVIJ

The formal expressions given by Backus and Mulcahy (1976a, p. 347) for the equilibrium equations arc,

however (in our notation):'

+ Backus and Mulcahy use the term "all space", which is apparently meant to be taken literally. We shall confine our dis-
cussion soriewhat momt to the point however, and take the lihbcry of replacing their "all space" by the entire interior of the
earth. In our notation this is V O.
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a,, f) + G ") =- ; r E V

where " represents 'the equivalent volume distribution of body forces' and is asserted to be Gilbert's

'equivalent body force due to the source, corrected for gravitational effects'.

Here, since Backus and Mulcahy ignore the boundary conditions on the failure zone, as did Gilbert,

and define the equilibrium equation after the failure process over the entire interior of the planet, then we

must define the stress tensor for the final equilibrium state to be t (U when r , V, (inside the elastic zone of

the planet) and to be "t,. when r e V, OV, (inside the failure zone), as was done earlier in (4-a). Thus, if

we write Backus and Mulcahy's expressions over the range of r for which they define it, but separately

for r in V, and r in V (the failure zone), we have:

a,[rip+ GF)]-, reV,

a, lr + G ] r-kv erV

However, comparing these directly with the required equilibrium equations given in (10) shows that:

0; r e V1

That is, as must be true, equilibrium requires yk' to vanish everywhere, including within the failure zone

V'. Therefore it is clear that:

yk'-0 ;r F V0 = V, 0 V

so that this body force equivalent is, in fact, identically zero in both V, and V'=Vo0V (that is,

throughout the planet including the region within the failure zone). Thus, it contributes precisely nothing

to the radiation field from an earthquake for essentially the same reason that Gilbert's stress drop

-13-



equivalent force gives a null result when gravity is neglected in his formulation. Thus, use of the diver-

gence of changes in the equilibrium stress-gravity field as the driving force for a spontaneous source will

necessarily give a null result, since the mathematical expression for the existence of equilibrium is pre-

cisely that this particular force vanish.

As a consequence of these results, Backus and Mulcahy's definition of an extended moment tensor

density as

MI = - r1~k) + - G()

and subsequent arguments about the size of the gravitational term (Gkm - G1)) relative to the stress drop

term (t f - are moot, since

in any case. Thus, since the divergence of MkI is the actual source term, we see that this "source term"

must necessarily vanish, whatever the magnitudes of the stress drop and gravity field changes.

Backus and Mulcahy also define the boundary conditions applicable to the equilibrium states before

and after the earthquake, and state them as (in our notation):

n.[ +G : =0; on aV

n [)+G( +=-ys; on aV

where ,V denotes the outer boundary of the planet (surface of the earth), since V is used by them to

dcnote the whole interior region of the earth. Here jump notation is used, so the plus and minus signs on

the brackets denote the difference in the bracketed quantity across the boundary i)V, when approached in

the limit from opposite sides. As noted earlier they ignore the failure zone boundary condition, since aV

(which is equivalent to our boundary 0Vo) is the surface of the earth. They introduce the surface source

term to include the case where the failure zone intersects the surface of the earth, in which case it is

claimed that 's will give the proper equivalent force term along this intersection on aV.
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However, inclusion of this "surface distributed" source term, contributes nothing of substance to

their formulation, and it still gives a null result. That is, consider the case when the failure zone does not

happen to intersect the earth's surface. Then W =0 by definition. Clearly then all possible equivalent

source terms vanish, that is -ys _ 0 and --S 0, and Backus and Mulcahy's formulation gives a null result.

Thus, it predicts no displacement field resulting from the event whatsoever, because all source terms van-

ish, and this is obviously incorrect. Since this reformulation of Gilbert's representation is incorrect for all

earthquakes for which the failure zone does not intersect the earth's surface, it is reasonable to conclude,

without going through a detailed evaluation of the spccial case of a failure zone intersecting the free sur-

face of the earth, that the reformulation is also incorrect in general. (In fact, since y _ 0 everywhere in V,

then it can be shown that yk, must also be zero on DV.)

At this point we have rather thoroughly explored the so-called stress drop moment tensor represen-

tation of Gilbert and the 'extended moment tensor' representation of Backus and Mulcahy, which is

intended to correct Gilbert's formulation. However, we have shown both to be misdirected and to give

incorrect representations of an earthquake source radiation field. Indeed both give (essentially) null

results when the required equilibrium equations are taken into account. Thus, neither of these formula-

tions account for the physics of a spontaneous failure source, nor do they kinematically or phenomenolog-

ically represent such a source.

Ill. The Backus-Muicahy Stress Glut Formulation

The main point of the work by Backus and Mulcahy (1976a,b) is not the reformulation of Gilbert's

stress drop equivalent, but the formulation of a comprehensive phenomenological moment tensor

representation for seismic sources in general and earthquake sources in particular. It is therefore

appropriate to comment upon the basis of their representation since we intend to generate a type of

moment tensor representation in a following section, but from quite a different point of view. Further,

their results are very similar to Gilbert's and are similarly incorrect.
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The essence of Backus and Mulcahy's approach (Backus and Mulcahy, 1976a; p. 342-346) is based

on the following considerations (in their notation):

(i) The exact equations of motion and gravity for the earth are

p a, = aSi - p ajy + ft in V

niSij = fj' on aV

V2 S = 4nGp , everywhere

W and DiW continuous on aV

W -* 0, at infinity

where V is the (entire) volume of the earth, aV its surface and f,' f, arc externally applied body

and surface forces respectively. Here W is the gravitational potential at any point, so gj = ay is

the gravitational acceleration. Finally, Sij are the components of the 'true physical stress' in the

earth and aj is the particle acceleration.

(ii) A 'Mathematical model stress' j may be defined as:

= Ei k akSl

where Eij t is the ordinary elastic tensor, or as:

j =SI SkkSi0 + Fijkl akSl

when prestress S9° and gravity are taken into account.+ Here Sk is the (seismic) displacement in

the elastic region of the earth. In addition, Fi* is the elastic tensor corrected for the presence of

prestress, so that:'

+.1e term S is always small relative to the other terms in Cij in seismological applications, and can always be

neglected.
++Since real stresses in the earh are orders of magnitude less than the magnitudes of the elastic constants appearing in

Eijkl, then it is justified to take Fijk -= E~jkl in most seismological applications and, in particular, in this one.
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F1~=E Is +l23~6kSJ+LSi 6j S k -k 11

(iii) The model stress can be calculated from the true displacement, sk, by virtue of its definition and,

with the introduction of the 'model stress' in the equations of motion (which can be achieved

by simply adding the divergence of this 'model' stress field to both sides of the equation of

motion in (i)), one obtains equations of motion expressed in terms of the model stress plus an

extra 'source term', which is used by Backus and Mulcahy as the "equivalent driving function"

or "equivalent source function" for a spontaneous release o[ energy corresponding to an earth-

quake. In particular, the equations of motion become, from (i):

p aj + = aiij + aiSij - p ajy + fj, in V,

when the divergence of the model stress is (formally) added to both sides of the equation of

motion in (i). This equation can also be written as:

p aj = Di~ij - p ay + 1f+ f , in V,

with,

where y)v is viewed (by Backus and Mulcahy) as an equivalent source term arising from the

introduction of the model stress Cij. Further, the boundary condition on aV then becomes, in

terms of the model stress:

= f+ on aV

where

yij = ni~ij - nSij , onl aV

with yj considered to be (by Backus and Mulcahy) a boundary source term, on aV, at the surface

of the planet.
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(iv) A moment tensor dcnsity Mj is defined in V such that

i Mij = --y , in V,

niM,=yj', onaV.

In addition, the "stress glut" rij is defined to be the difference between the model stress Cj and

the true physical stress Sip so:

rij = Cij - Sij.

Backus and Mulcahy assert that 'evidently the physical source region is precisely the region

where the stress glut is non-zero' This statement therefore fixes the choice for the model stress

to be the (essentially) elastic stress outside the failure zone, which is identical to their 'true

physical stress' Sij in the elastic zone.

(v) The equations of motion and gravity, given in (i) above, are linearized throughout the volume

V (the entire planet including the failure zone volume) and a relative model stress C-1 is intro-

duced such that:

Cij = s9 +

where SP° is the prestress in V. The equations of motion and gravity are then expressed as+:

pO a"Si = aicil - po a I - pI ajv 0 + f' + -(jV, in V,

ni[Cil + ak(SkS,) - OkSi) = f+ ', on N,

pt = _ k(p0 sk) , inside and outside of V,

V~y' = 4nrGp' , inside and outside of V,

+ As noted earlier in (ii), the various terms in the boundary conditions, stress tensor V and elastic tensor F 1l. involving

the prestress S9 and derivatives of it, are small in the clastic zone and ordinarily are neglected. They could be large in the
non-linear zone, but these linearized equations are not valid in this zone in my case.
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[W']'=0 and nI[ak ty ]=4tGpon,,,,on )V,

A -4 0 , at infinity,

1
= -Sk kSlJ + FA! )kSl , in V.

In addition, the initial conditions

s, -as = 0, in Vatt= 0,

are used.

A formal eigcnfunction expansion, using the normal modes of the earth, is then used to express a

solution of these linear equations as:

S3(x,t) = A,(t) u, ()X

with

Av(t) = (ov f dt sinov(t - ) Y , i(v) dV + f u3sii() da 4 fJ fiJ(v) d V + f Uij(v) da
0 V v V av

where the integration is over the entire volume V and outer surface aV of the planet and u(V) are the spa-

tial eigenfunctions for the planet, with i5j(v) denoting the complex conjugate. +

The Backus and Mulcahy result for an earthquake source, where no external body forces are applied

and the 'source zone' does not intersect the earth's surface aV, is simply

s'(x,t) f dt sin ok(t - t) (aFi) jiv) dV u v)(x) (11)
V-I 0 V

-j

+Both Gilbert (1970) and Backus and Mulcahy (197 6a) cite completeness of the modal cigenfunction set as the basis for

their representations of the seismic field from an earthquake. But since they completely omrit the boundary condition at the
failure zone. they end up omitting integral terms in A(t), the "excitation function", that represent s"attering from the
failure znc boundary, among other effects. (Such integral terms are explicitly considered in later sections of this paper and
are shown to ansc quite naturally when a proper Grecn's function integral reprsentation is used to describe the seismic ra-
diation effects associated with a spontaneous failure process - that is an earthquake.) Further, and most important, these au-
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in terms of the 'stress-glut'. Here the spatial integration is only over the 'source region', that is V' the

failure zone, and the 'model stress' is the stress in the linear region. (If the 'source region' intersects the

free surface av, then their result would also include the surface integral over aV involving ys = n,f'J.)

The logical development descnbed in (i) through (v) is not, however, a proper one and the 'stress

glut' and moment tensor representations involving volume integration over the failure zone are, conse-

quently, incorrect.

The precise nature of the problem with their approach can be seen most clearly by considering the

failure zone, and its associated boundary, explicitly in the formulation. We employ the notation used ear-

lier and indicated in Figure 1. Appropriate equations of motion in the separate regions V (the nonlinear

failure zone) and V, (the linear zone surrounding the failure zone) are

*d- [PVj - = g;rV 1
PALVP - aiSJ = p1g(); r c ViJ (12)

with the tractions, S,'n, and SJn , and velocity fields, v' and 0 ), in V" and V, being related by boundary

equations expressing conservation of momentum, mass and energy across DV', the failure zone boundary.

On the other hand we see from (i) above that Backus and Mulcahy write the equations of motion

throughout the planet in the form

pai - jSj Pgi (13)

with a, the acceleration. (Applied external forces are not relevant and are omitted throughout the remain-

ing discussion.) This equation can be formally related to those in V' and V, by simply letting the equation

take the form of one or the other of the equations in (12), depending on whether r is in V' or V1. Since

Backus and Mulcahy use the stress in the linear zone, S , , as their model stress (which, in fact, is the only

choice) then, as in (iii) above, this gives for their equation (13):

thors consequently ignore the essential nonlinear propertics of the fadure zonxe and integrate through this region, thereby
summing (physical or "true") stress changes and gravii) field changes from withii this nonlinear zone as if they were linear
effects which superpose linearly and are propagated linearly within this iAone.
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p a, - ajS,¢1, = p gi y "V," (14)

with

,, = aj(Sj- ,

Now in terms of the equations givcn in (12) for Ohl linear and non-linear regions, this referencing to S("jt

simply gives:

()- a S(I) = 1 ) rV(15)

The set of equations in (15) is the explicit equivalent of the equation (14), which is that used by Backus

and Mulcahy.

Backus and Mulcahy then define the stress difference Sk) - S1I, appearing in (15). to be the 'stress

glut' Frj. Next, as described in (v) above, they linearize the equations of motion everywhere in V, the

interior of the planet, so that in (14) they in effect replace pa, by p a2s,. However, as we see from (15),

this requires the same approximation to be carried out in the nonlinear region V . That is, their lineariza-

tion of equation (14) throughout the planet means that they linearize the first of the equations in (15)

d [P,,, = d[, cannot ordinarily
within the non-linear zone. But obviously the acceleration term -t s1

d t dt no rdnrl

be approximated by p"t's: in such a region, since transport terms, which may be large compared to p'a t2Si

are neglected '. However, even if such an approximation is made for this inert* I term the result is:

- a's"'= p~g+Q[Ssp] ; r E V'. (16)

But Backus and Mulcahy use the v'ame displacement function s, everywhere throughout the planet. That

is, they effectively replace the inertial term p°a,2Si in (16) by plo,2S,1
I , which corresponds to the analytic

continuation of the linear (el.-tic) acceleration field into the nonlinear failure zone. Therefore, B-ckus

+Transpor temis are those ansing from the last term in the identity: d/dt (pv) = a, (pV) + v.V(pv). T'hus whei, the
total dcnvati .c in the identity is approximated hy the partial derivative. then this requires neglect of ici.n, like V'V(PV).
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and Mulcahy use a fully linearized equation in the failure zone, in particular:

pja,2,S0 ) - pagO) ) 4-19 (S - Si' i ) ; r c V' (17)

Thus, these authors not only implicitly linearize the inertial term in equation (15), but they also

replace the nonlinear displacement s," vith the analytic continuation of the linear displacement 01) from

outside the failure zone into this zone. Further, they similarly replace p' and gi by P, and g,(), again by

implicit continuation. Viewed in terms of the validity of such a procedure, even as the crudest of approx-

imations, it seems clear that it has no physical or logical basis. Certainly if fully nonlinear problems

could be solved by introducing a source term which incorporated a part of the nonlinear equation (in this

case the nonlinear stress term), with the remainder of the equation linearized so that a linear Green's func-

tion solution could be obtained, then we would have at our disposal a method that could solve any non-

linear problem. There is no question that this is not the case, neither in general nor in the present prob-

lcm.

In fact, if the procedure employed by Backus and Mulcahy is carried to its correct logical conclu-

sion, then the differences between the nonlinear inertial and gravitational terms in V' and the analytic

continuation of the comparable linear terms from outside the failure zone into V', should be included in

the source factor. That is, by the same logic used to introduce the stress difference term (the "stress glut")

in the equations of motion in V", one can form from (15) (by adding and subtracting the analytically con-

tinucd inertial and gravity terms pdt s, ) and pgi( )) the equation:

~ SP()+[f ~'J-~ascj- pg + + Ea' g$ -pg)+ -SIj ; r eV
dt -

This is perfectly rigorous and no approximations are involved, as opposed to the Backus-Mulcahy result.

Now the extra factors appearing, in addition to the "stress glut" term, are the two difference terms in

brackets. These can, following the reasoning of Backus and Mulcahy, be considered as (unknown)

"source" terms and, to emphasize this interpretation, can be written in combination with the stress glut

term as a "source" of the linear elastic field s,(' ). That is, the previous equation can be rearranged as:
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fn t I I I j tar

Pi ?c> S11 s,- p, g(I) p1 a? ,' - ¥(p, v1) + (p'g,'- p1 g,1% + oj (s; - s '1)) •rrv

Further, one can combine this result with the second equation in (15) to obtain a result applicable in "all

space", that i', for r E V 'GV1 . In particular, one has the formal result:

pl a2 SO) as s(1) 1 P 1g,(') + y€, -, r c v '0- V,

where

ja t s I (, dt~ (P)j, 0 g+ p ag j - S 0)j r cV'

yi=O ;rcV,

This is essentially the same kind of result as that obtained by Backus and Mulcahy, but includes the two

extra factors in the source term y, that were neglected by them.

At this point one might be tempted to conclude, since this is rigorous with nothing neglected, that

the result constitutes a very similar but somewhat more "precise" representation of the "equivalent

source" term. However, while it is true that the equation is, in fact, the correct consequence of the pro-

cedure used by Backus and Mulcahy, it by no means provides a representation of the equivalent source

due to spontaneous failure (an earthquake) or any other kind of source. This is easy to see, since it is only

necessary to note from the first of the equations in (15) that:

d (p'v') -ajsij= p'g ; r E V'
dt

which only expresses conservation of momentum in V'. But if this equality must be satislied, which of

course it must, then several of the terms in the expression for y, must cancel. In particular, using this

equation we have that y, must always (identically) reduce to:

,= pat ) - a - pIg(1} ; rE: V '

y-U ;rEV,

If this is now re-inserted into the "equation of motion in all space", we have:
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pJa 2s 1 )_ a&SI' = pjgl) +P 1 2s1 (1 I _ -jI p 1g(1) ;rEV'

plaSiP)- jSJ ) = plg,( 1) ;r - V,

While these equations are exact, the first is nothing but a trivial identity and the second is the regu-

lar equation of motion in the elastic medium outside the source region. Thus, the consequence of the

approach used by Backus and Mulcahy, when carried out properly, is a triviality. However, since they

actually neglect terms of the same order as the "stress glut" term they retain, they do not recognize the cir-

cular nature of their procedure. In any case, it is clearly safe to conclude that the formal mathematical

basis for their representation is erroneous.

IV. Consequences of the Stress Glut Phenomenological Representation

Aside from the previous observations concerning the foundations of the stress glut representation,

there are several consequences of this formulation that indicate its inappropriate nature.

As a first example, consider the limiting form of the stress glut function as time tends to infinity

(the static limit). In this case, with O) - F1J:

lim =lily [ajs' - lim [asi ] {=IPlgi(F) ;rev
t- t-+- t-- U 0; r e V1

where p', etc., represent final static values of density, etc. Here we have simply used the fact that the

static stresses must satisfy equilibrium equations. Therefore we observe that, like Gilbert's representa-

tion, this source term only represents gravity field changes in the long time. or low frequency, limit.

However, while Gilbert's result represented earthquake induced gravity changes in the entire planet, the

result given by Backus and Mulcahy represents, in the low frequency limit, only the changes within the

failure zone. But, as previously observed, the total of all gravity change effects are at least several orders

smaller than tectonic effects and the effect of those within the failure zone alone would be considerably

less than those to be obtained from Gilbert's result.
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More explicitly, if we evaluate the displacement field due to the "stress glut", as given by Backus

and Mulcahy in equation (11), taking the stress functions involved in the stress glut tensor to be at least

approximately separable in space and time, then we get:

,,=-- [- ('g' - p 1gjO)) u7 d sin ,(t - t) f (r) dt

where f(t) denctes a time function characterizing the temporal variation cf both the stresses Sj and S,j in

the definition of the stress glut. Thus, no matter what the ,urm of the time variation of the stress glut fac-

tor, the magnitude of the predicted disrdcement field is determined by the inner product of the gravity

field changes with the elasnc eigenfunctions for the earth taken over the failure zone. As with Gilbert's

result, with wnich it differs only in that the volunne integration is over the failure zone rather than the

entire volume of the earth, the predicted displacement field from this representation will be many orders

of magnitude less than that actually associated with earthquakes.

The use of the stress glut formulation in the context of inclusion theory (e.g. Eshelby, 1957), affords

another example of a clearly incorrect prediction for the elastic wave radiaion. Here the problem, as con-

sidered by Backus and Mulcahy, involves the creation of a volume inclusion within a stressed medium

where the material within the inclusion is viewed as transforming to a new physical state, such as from a

solid to a fluid +. A transformation, of this sort must result in the radiation of elastic waves, since the

stress outside the inclusion must dynamically adjust to the presence of the new material. In treating this

problem Backus and Mulcahy use the expression

i. Eikle F

for the stress glut, where E,,k is taken to be the elastic tensor throughout the inclusion after transformation

and ek is the so-called "stress-free strain", which is precisely the strain that would occur in the inclusion if

it were allowed to undergo the transformation unconstrained by the surrounding matrix (i.e., when the

+ The timc variation for this transformation is unspecified in the problem.
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inclusion boundary is a free surface).

However, for the transformations described by the Eshelby inclusion theory, E, must be a constant

(Eshelby, 1957). Further c is by definition an equilibrium field. Consequently, the equivalent volume

force vector associated with this stress glut vanishes. That is:

-vA- [Eiiukl] = 0,YJV __-lrij = Xjije=0

since the elastic tensor is constant in the inclusion and e Fis an equilibrium strain field by construction.

Therefore this stress glut representation gives a null result for this problem and this obviously cannot be

correct.

It is also easy to see that a stress glut formulation does not describe the physical manifestations of

phase transitions. In particular, consider the transition to involve sudden melting to form an inclusion

within a solid matrix that is initially under a pure shear prestress. Suppose the melting is such that an

ideal fluid is produced, so that the shear modulus is zero. Then Eiw reduces to a form such that

)Z = X,je F

where X is the Lam6 constant for the fluid and e , is the volume dilation of the fluid when the boundary

stresses due to the surrounding matrix are removed. From the form of the stress glut it is evident that it

corresponds to a pure pressure, with no shear stress components. Thus, we can conclude that this source

can never produce a correct result, since not only does the divergence of the quantity F,, vanish but the

only radiation field that could possibly be produced by such a source term would be a pure compressional

wave field since only ej, is present and we know that shear waves must be produced because the initial

field in the surrounding matrix was pure shear and it must change drastically after the transformation.

(Such a change can only be accompli.,:hcd by the radiation of shear waves, which result in a relaxation of

the shear stresses in the vicinity of the fluid inclusion.) Therefore, aside from the earlier fundamental con-

siderations, even a rather cursory examination of these special cases shows that the stress glut source

representation fails to describe the ba.,ic properties of the elastic wave radiation to be expected.
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V. Dynamical Representation of Spontaneous Failure in a Stressed Medium: The "Time Depen-

dent Equilibrium" Method

In order to display the proper "equivalent force" term for a spontaneous seismic source like an earth-

quake, which derives energy for its formation from the medium itself and simultaneously releases stored

energy from the medium, as evidenced by the seismic waves radiated from the event, it is necessary to

carefully consider the nature of equilibrium in the medium during formation of a failure zone. In doing

so we observe from the onset that the conditions for equilibrium are continually changing with time as the

failure zone forms and expands. This follows from the force balance requirements themselves and, in

particular, from the fact that equilibrium depends upon continuity conditions at all the boundaries of the

medium. Therefore since failure produces a boundary within the medium that changes dimensions with

time, then the equilibrium stress must also change parametrically with time because of the changing

boundary conditions applying to the internal stress fields.

More quantitatively these statements regarding equilibrium changes are expressed by the rela-

tions +"

af.(") - p(c)gke) ; r, E V

III )n1]j = 0; r, E aV1(t.)3

where we use a superscript (e) to explicitly label the variables as equilibrium fields. Further, we choose

to explicitly label the coordinates as r, and t, denoting "source spatial coordinates" and a "source time

coordinate", respectively. These equations are entirely analogous to those of equation (2), except that we

have taken explicit note of the fact that the volume external to the failure zone, V, as shown in Figure (1),

and the surface of this volume, aV1, are both parametrically dependent on the time variable t. Thus the

equations in (18) express the conditions for equilibrium in the elastic region and since VI(ty and aV,(t)

depend on time, then the solution of these equations will yield stress, density and gravity fields that are

+As before, the double bracket notation appearing in (18) is used to denote the jump in the enclosed quantity across the

boundary.
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functions of both r, and t,. This dependence will occasionally be explicitly displayed, for example by

writing the stress rj ) as cr)(r5, t) and similarly for the other field variables. Likewise, the equations

specifying equilibrium inside the failure zone are

WC - p(e)e) ; r, E V%(,]
k (19)

where V" is the failure zone volume and V' its surface, as shown Figure (1). This equation expresses the

same equilibrium relationships as were expressed by equation (3), but here again we have been more

explicit in indicating the parametric dependence of the fields on time through the linkage with the time

dependent volume and surface boundary of the failure zone.

Of course it is not usual to speak of an equilibrium field as depending on time and it appears at first

sight to be a contradiction in terms. However there is really no contradiction, since the dependence is

parametric; that is these fields are the equilibrium fields that would exist if the failure zone boundary were

of the size and shape specified at a particular time z,. Thus, we are merely asking what the equilibrium

fields would be if the failure zone were "frozen", for all time, at a size and shape appropriate to a particu-

lar time t. Since the size and shape of the failure zone is a function of the time variable t, and since the

equilibrium fields (stress or displacement) are a function of coordinates of the surface at time ,, then the

equilibrium ficlds will be implicit functions of t,. Further, we know that the spatial dependence of an

equilibrium displacement field is always a bi-harmonic function with coefficients ol the bi-harmonic

series depending on the surface coordinates of the failure zone inclusion. Thus we also know, a-priori,

that the parametric dependence on t, will appear in the coefficients of a bi-harmonic series expansion for

the equilibrium displacement.

In the dynamic description of the phenomena associated with spontaneous failure in a stressed

medium the time dependence of the equilibrium field is a hidden (or internal) variable. That is, the equa-

tions of motion in the linear region outside the failure zone are
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oa,.(p a,.Uk) - allk = P 9k ; k = 1, 2, 3 (20)

when written with the source coordinates as independent variables. However, the various dependent vari-

ables, such as the displacement field uk(r,, t4), are total fields; that is they include both the equilibrium

field and a purely dynamic field as components. In particular, they are of the form

Uk = Uk() + U (d) (21)

where the "dynamic field", ukd), can be defined simply as the difference btween thc field uk appearing in

(20) and the field uk(c) defined by (18). Clearly, (20) does not display the equilibrium field u () explicitly

and so it, along with the other equilibrium fields connected with this equation, can be termed hidden

internal field variables.

Ordinarily the equilibrium fields are of no consequence in the solution of (20), since in most elasto-

dynamic problems the equilibrium displacement is not a function of time. Thus, in the case when the

equilibrium is constant, substitution of the complete form for Uk into (20) produces D,.(p auk(d)) for the

inertial term and substitution of the comparable expressions for tu, and g,, involving the sum of their

equilibrium and dynamic components, results in cancellation of the resulting equilibrium terms by virtue

of the equations of equilibrium, as given by equations of the form of (18). Therefore in the case of time

independent equilibrium, equation (20) is an equation for the dynamic fields and states that:

,(p ,.ud)) - , pTgd) = p gk = 1, 2, 3

However, when the equilibrium fields are time dependent, as is the situation for a spontaneous

failure process, then equation (20) gives a different result. In this case we have

Uk = u e)(r,, t) + u d)(lr, t.)1

Tl,= t11.(r,, t) + Tjk)(r, t) (22)

9k gk(e)(r,, 4) + g (d)(r, t)J

where the equilibrium fields all depend on 4 by virtue of equations (18) and (19). Now, use of these

forms in (20) gives:

- 29 -



a (p ud)) + C1 ()j) _ a T~d _ a g~c) W p(gd)

aI0 k| .( atU • I Pi+

Here the inertial term involving u C) does not necessarily vanish, since there will be variations in u(c)

because of the time dependent boundary changes. However, as previously noted in equation (18):

t) pgk(e)

and this relation holds in all situations; that is whether Ti ) and gi() are parametrically time dependent or

not. Therefore we have,

(d))- = - ,p aouc) + p gk ; r. V 1(t4)

The equilibrium field in the linear zone outside the failure volume can, ho -. zver, be expressed as the

sum of the changes in the equilibrium state due to the introduction of the failure zone, which can be

denoted by u(*)' (r, , tQ, plus the (time independent) field u (r,) describing the initial equilibrium state.

Thus we can always express u(e) as

u(e) (r., t u(- ) ' (r, , + u0 ) (r.) ; r5 V,

as a consequence of linearity. Since time derivatives of u(O vanish, then the equation of motion becomes

('d)) - (d) - _a
,(p iu)) I - - _. (p a Uk() + pg80) ; r. E V1 ) (23)

Thus, we have that the term - ikdp ku [e)') is the source term (or "equivalent body force term") for the

dynamic field generated by a localized failure process within a prestressed solid. Clearly this source term

is distributed throughout the region V,, since it involves time rate changes of the equilibrium displace-

ment defined throughout this region. Thus, the equivalent body force term for an earthquake is not the

divergence of a stress drop, but is an "inertial force" produced by changes in the elastic equilibriwn dis-

placement field that occur because of the creation and growth of the failure zone in the prestressed solid.

More specifically, if the failure zone growth occupies a time interval (0, tO), then neglecting the small

effects of density changes associated with the relaxation of stresses:

a'(P at.U(0) 2 .eo
- o (p ug ) 

- p oua)' = F(r,, to 0 ; 0 ! t, !5 To

0; t, >To
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where the "force" function F(r,, t) is a direct function of the failure volume time history of growth. This

function must also depend on the rheology of the material within the failure zone as well as the elastic

properties of the medium surrounding it, by virtue of the boundary conditions at the failure surface.

The analytical form of this source term is prescribed by the boundary value problem of (18). There-

fore, since the fields prescribed by (18) are equilibrium fields, it follows that the displacement field u(e) is

a biharmonic function of the spatial coordinates (e.g. Landau and Lifshitz, 1951), as noted earlier.

Further, the field (I) and u(c)' are similarly biharmonic. Thus, since the coefficients of the biharmonic

series are fixed by the shape of the failure zone inclusion as well as by the value of the initial stress field

and the rheology of the material (both within and outside the failure zone), then the parametric time

dependence of u(e)' will be contained within these series coefficients. Consequently, even without

knowledge of the prestress field, the rate of failure expansion, the material properties and the shape of the

failure zone, we know a good deal about the analytical form of this equivalent force term.

Before making use of this formulation for the dynamics of failure phenomena (and our knowledge

of the biharmonic form of u(e)') it is useful to point out that this formulation is a particular example of a

more general class of problems involving time dependent internal equilibrium changes. In this regard, it

has been shown by Dilts (1985) that the decomposition of stress and displacement fields into dynamic and

equilibrium components, so as to display the internal equilibrium field variable, allows the permanent

deformations due to microcracking or lattice dislocation creation or movement (which results in macros-

copic plastic behavior) to be treated directly in terms of equilibrium field changes in the equations of

motion for the material. As with the present problem, time dependent equilibrium changes appear as

dynamical terms in the equations of motion. However, as shown by Dilts, since the particular equilibrium

field changes associated with microscopic disordering within the solid changes are generally dependent

on the dynamical displacement u(d) and its derivatives, then the result is the occurrence of non-linear

terms in the equations of motion.
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On the other hand, we observe that the result expressed by (23) is a linear equation. This is because

we can partition the spatial region around a single failure zone into zones of linear and nonlinear material

behavior, where the changes in equilibrium within the linear (elastic) zone only occur because of the

requirement that boundary conditions must be satisfied on the time varying failure boundary. Therefore,

the equilibrium field, u(), at a point in V1 does not depend on the dynamic displacement or its derivatives

at that point, but only on geometric and material characteristics at the failure boundary. As a conse-

quence the equilibrium term in (23) is linear. However, the behavior of the material within the failure

zone would be described by internal equilibrium field changes that depend on the local displacement field

and its deratives due to the intense microscopic disordering produced by any failure process. Conse-

quently the dynamics of the material motion in the failure zone would be described by an equation of

motion with dynamic terms again involving changes in internal equilibrium, but now with these terms

depending on the local dynamic displacement and its derivatives, so that these terms would be nonlinear

in the dynamic field variable.

We note further that both linear and non-linear changes in equilibrium can result in either absorp-

tion of energy from the dynamic field or release of energy to it. That is, "dynamic equilibrium" terms in

the equations of motion can correspond to either "sources" or "sinks" of energy for the dynamic field.

Further, this behavior may not only be spatially dependent but also time dependent, so that energy may be

absorbed or stored at a point and later partially or totally released at that same point. Clearly, because of

the irreversible nature of the nonlinear changes within a failure zone, we expect absoiption of energy in

this region while in the linear zone we expect a net reduction of stored energy in the equilibrium field,

with the stored energy changes being a consequence of relaxation of the equilibrium tectonic prestress

field around the failure zone. Clearly then, the contribution of the equilibrium field changes as "sources"

for the dynamic field can be very complex and can involve temporary increases in stored energy, followed

by decreases, since the strain changes are reversible in the linear zone and the growing failure zone can

require increased strain levels locally followed by decreases as the position of the point relative to the
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failure boundary changes. Such behavior will be dictated, on a zpatial and temporal basis, by the analyti-

cal form of u(e)' in equation (23), with the time dependent biharmonic coefficients in the expansion for u(€'

reflecting the changing position of any point in the medium relative to the failure boundary as it grows.

In addition to the rather complex linear behavior to be expected from the volume source term in

equation (23), it is also to be expected that dynamical complications will arise at the boundary of the

failure zone. Here we expect, on physical grounds, that energy will be transferred from the linear zone to

the nonlinear zone where it will be absorbed by one irreversible process or another. In particular, it can

be expected that the energy required to cause failure will be, at least in part, extracted from the dynamical

field at the boundary. Such phenomena must therefore be reflected in the boundary conditions connecting

the linear and non-linear zones at the failure boundary. Thus such boundary conditions, along with (23),

serve to define the complete dynamical boundary value problem for the displacement field in the linear

region V,.

The boundary conditions that are appropriate are those that express conservation of mass, momen-

tum and energy across such a "singular" surface, where the possibility of irreversible energy absorption

along a moving boundary is explicitly addressed. This physical situation has been considered by

Archambeau and Minster (1978) and they have shown that the appropriate boundary conditions on the

failure surface, V', are:

I[,vnil =0 0}

I[(pVkVi - tk)ni]] = 0 (24)

f[ (pE vi" - vktki + q)n] =

where the double bracket denotes the change in the quantity enclosed across the failure surface. Thus, for

example:

i[vl v(aV1') - ,,(avJ

where aVj' and Vo' denote the surface OV' approached from inside and outside the failure zone.
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In these relations v denotes the particle velocity [dt_, n is the normal to the failure zone boundary

and q the heat flux vector. Also

VyE V - U

where U is the velocity of the failure surface boundary and E is the total energy density for the material,

defined by

E = r + VkVk/ 2 +

with r the internal energy and 4 the gravitation energy. The quadratic VkVk/2 corresponds to the kinetic

energy contribution.

All the field variables appearing in (24) are, of course, functions of the coordinates and time, includ-

ing the surface normal n aad U, the rate of change of the failure boundary with time. The first of the

equations in (24) expresses conservation of mass, the second conservation of momentum and the last con-

servation of energy. All the field variables include equilibrium as well as dynamic components. Thus,

for example, the particle velocities have the explicit form:

V = V
(d) + v(e)

As was shown by Archambcau and Minster, the boundary conditions can be reduced to simpler

form for the physical situation prevailing during rapid failure. In particular, whcn the density changes

(and the gravitational change 0) upon failure are small and the rupture rate is high (that is equal to a

significant fraction of the local shear velocity and much larger than the particle velocity .) then, when the

heat flux changes across the failure surface are neglected relative to the larger mechanical flux term

[IVkTiJ, it follows that the equations in (24) reduce to:

PUREIVk = - IIrkIj (25)

where Tk = rkln, are the components of the surface tractions on the failure surface. Equation (25) combines

the conservation of mass and momentum equations from (24). Further, under rapid failure conditions the

energy equation in (24) reduces to:
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II2 Ip 2U (26)

where the change in internal energy, [rI1, is identified as a m,,tcrial property (ie. a "latent heat" of transi-

tion) and is denoted as L. Here the "rupture rate", UR, is defined as

UR (U - N)'n

and expresses the excess of the expansion rate of the failure surface over the particle velocity in the direc-

tion normal to the surface.

Equation (26) expresses the fact that an energy barrier to failure exists, and this barrier is

represented by the internal energy change [[F] (or L) required for failure to occur in the material.

Further, the equation shows that the rupture rate is proportional to the magnitude of the traction change

(the "stress drop") divided by square root of this energy factor, that is:

Since p and L are material constants, then this says that the magnitude of the traction or stress "drop",

IAT I= fEk] , is directly proportional to thCe rupture rate and vice-versa. This is a dynamical condition

that will reflect itself in the proper solutions for radiation fields from failure processes in different

material types.

The two dynamical boundary conditions on the failure surface can be combined so as to eliminate

UR and produce a single boundary condition involving only the dynamic field variables and the intrinsic

internal energy change, represented by the (material) parameter L. That is from (25) and (26) we have:

1/2

IdV~ [2L/ IJJ h~kil (27)

assuming that none of the traction jumps vanish (in which case the ccmscrvation relations are trivially

satisfied.)
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Clearly this relation shows that the jump, or discontinuity, in the particle velocity vector across the

lailure boundary is in the opposite direction as the jump in the traction vector (and vice-versa) and is, as

well, proportional to the square root of the material parameter L. However, the relationship between par-

ticle velocity and traction jumps is non-linear, due to the dependence on the traction ratio on the right side

of (27). Thus, while (25) expresses a similar working relationship between the traction and velocity

jumps across the failure surface, the true non-linear relationship between these field variables is hidden in

the factor involving the rupture rate. In particular, since the rupture rate is required to be proportional to

the stress drop factor I A I in order that energy be conserved, it follows that (25) represents a non-linear

relationship between the traction and particle velocity field variables.

It is worth noting that the dynamics of the failure process requires that both the particle velocity and

the tractions be discontinuous across the failure boundary. This is not the usual assumption made in the

construction of pure kinematical models of failure, such as in a dislocation model of an earthquake where

the tractions are assumed to be continuous while components of the particle velocity (and displacement)

are assumed discontinuous. Neither is it the case for the variety of so called stress pulse models, where a

stress drop on the failure surface is used to "drive" the surrounding (elastic) medium and thereby produce

a simulated earthquake radiation field. Obviously when (current) dislocation or stress drop models are

used to generate a moment representation, for purposes of inverting observational data from earthquakes,

the result will be non-physical in the sense that the boundary conditions assumed are not compatible with

the dynamical constraints imposed by energy and momentum conservation. Therciore "displacement

offsets" or "stress drops" inferred from observations obained through the use of such formulations do not

actually represent these physical quantities. As is shown in a later section (VIII), the required form of the

Green's function surface integral representation describing the seismic radiation involves both traction

and displacement changes on the failure surface. Therefore a combination of a "stress pulse" ;id "dislo-

cation" sources is generally required for compatibility with the dynamical constraints involved in spon-

taneous failure.
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VI. The Green's Function Representation of Dynamic Fields Generated by Time Dependent Equili-

brium Changes

A compact representation of the dynamic field u(d) appearing in the equations of motion (23), which

also incorporates the effects of the boundary conditions in (25) and (26), is obtained by introducing the

usual Green's function for the elastic medium V1.

Specifically, consider the Green's function G' (r, t; rl,tj) satisfying the inhomogeneous elastic wave

equation:

a,(p D,,Gkm) - aIG I = 47t 8f 5(r - r )8(t - 1) m4tA"' (28)

where Gm is a two point tensor obeying the usual causality relations (see Archambeau and Minster, 1978,

for details) and where r, and tj are source coordinates and time, while r and t are receiver coordinates and

time. Here &' is the Kronecker delta (which is zero if kem and unity if k = m), while 5(r - rj) and 8(t - t1)

are Dirac delta functions. All partial derivatives in (28) are to be taken with respect to the source coordi-

nates. Further, G T denotes the stress tensor associated with Gm. That is:

Gm =c C I 3G
GkIc a,Gp

where Ci is the fourth order elastic tensor.

We can take G' to satisfy boundary conditions along the exterior surface of the medium and along

interior surfaces of material discontinuity, excluding the (growing) failure surface, since in the cases of

most interest explicit representations of G' in layered media are known. That is, G " may be taken to

satisfy all "normal" boundary conditions within flat or spherically layered media except those "non-

standard" conditions, given by (25) and (26), which apply to the failure boundary. An explicit form for

G' which satisfies the normal material boundary conditions involving continuity of tractions and the nor-

mal component of the particle velocity (or all particle displacement components if the material boundary

is a "welded" solid-solid interface) is, in the frequency domain:

G'(r, o); rl, a~)) 4n (2r9)) lr, h

k(w~) ( O L~N(k, wo)
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where vIm are the component displacement eigenfunctions for the medium (without the failure zone) and

k(wo) denotes the infinite set of eigenvalues for the medium. (Here %VI is the complex conjugate of W, and N

(k, o) is a normalization constant.) Since the eigenfunctions W atlisiy tne usual material boundary condi-

tions by definition, then GI also does. For the eigenfunctions in layered spheres and half spaces see, for

example, Ben Menahem and Singh (1972, 1981) or Harvey (1981). (For a layered half space, however,

the sum over the wave number k(wo) in the eigenfunction expansion for GI' may be replaced in part, or

totally, by an integral, so the summation in (29) should be interpreted as a generalized sum.) These simple

"layered media" cases are those of most interest in geophysics and in any case are sufficient for a study of

source radiation effects.

Therefore, with the Green's function of known form satisfying all boundary conditions, except those

on the failure boundary surface itself, we can obtain an integral representation of the dynamic displace-

ment, U ad), in equation (23.) by the usual methods. That is, forming the inner product of each term in (23.)

with G' and integrating over the source coordinates in the volume V, outside the failure surface and over

the source time, gives:

fati Jao[p a -4- 4- -de I d a dVI

dJdtI f dt Gdfa= - fdti f[
V, V, --. V,

Likewise, forming the inner product of each term in equation (28) with ukd) and similarly integrating over

the source variables gives:

• 4.* 4-

fdtlf, ,[p ,G,-H ud)dVi - fdtlJlGm' u d)dVI = 4ru (d)(r , t)

V, V,

where the formal integral properties of the delta functions on the right side of (28) have been used. Now,

subtracting the second of these equations from the first and making use of the fact that

TI(dI@I "= GI aiuod)

ultimately gives:
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Jdti f a- [P alkd - p -y-- u d j dVI - fJdti f -i~ 1~dr 7a- k ,d) dV

4-

+dt f [a,(p u G dVI = - 4rtu,')(r, t) (30)

The first integral term can be transformed so that the time integration can, in part, be evaluated.

However, it is clear that the failure zone is expanding with time and so the volume V, exterior to this zone

is time dependent. Thus we can't simply commute the time derivative with the volume integration in the

first integral term, but must take account of the time variation of the spatial integration. To do so we can

make use of the transport theorem for the case of a boundary that moves at a rate that is not equal to the

particle velocity in the medium.

This case has been treated by several authors, for example by Eringen (1975) and by Minster

(1974), the latter giving several detailed derivations of the result. (Archambeau and Minster, 1978, use

the theorem in a similar application as well.) Specifically, for any function F that is dependent on the

deformation within the medium (ie. dependent on the Eulerian coordinates) we have:

d fFdV dVj + F U'n da (31)
V0 W,(t,) V,(,) v(t,)

where U is the velocity vector of the boundary surface and n is the normal to that surface.

Now if we take the integrand in the first integral in (30) to be the function F, then we can apply (31)

directly. We therefore have, for this first integral term:

ta " a[ud) P aGk.' uiI n a kJdt, -J p-Gd ()dVI dj{dfP [ audk - ok (d)]V

-t f - , 1 , k U I
- vv,(t,)( k )I

However the first integral on the right side of this equation vanishes identically, that is:
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4- 4- r +

f dt f &IkP k .

i , _ _ v v€, _ v,,
Idd i u~) at , at,) J at,dt, JIP~ ~.~ ud V -0. =Vahg)

This follows from the fact that the medium is at rest initially so:

u =) au d) 1 *o
u t--=-' = 0, as tI -, *

and since G ' is causal, so that

Gm~r, t; r, Gj(r, t__ r I t , =

at,

(Actually the above is true for all t<t1, but, in particular, when t, becomes infinite then it is true for all

receiver times t.)

Therefore, using these results in (30) and further applying the ordinary form of Gauss' Theorem to

the second integral in (30), gives:

4iru2)(r, t) fdt f { (d~) + urd) U [G m + a,,k -- ]U (d) I n1daI
-avl(t,) L p~-- 1 ~ ~y

dr a ( uc'L.pgdl G-dV1  (32)

This result is one form of the integral Green's function representation of the dynamic radiation field, u,

produced by a growing failure zone in an initially stressed medium. The result is formally exact.

The first integral term on the right side of (32) involves an integration over the failure boundary and

the integrand in brackets contains the same combination of terms as are involved in the conservation rela-

tion (25). Thus, the integral representation contains the natural boundary conditions that apply to the

physical process. Since only dynamical field quantities are involved in this surface integral term, it is

appropriate to interpret this integral as representing the interaction of the dynamic field with the (grow-

ing) failure boundary. As such it would represent scattering and, possibly, absorption effects at the boun-

dary. (Note that the rupture rate, UR = Ujn1, appears in the integrand of the integral and that UR is a func-

-40-



tion of the energy, L, absorbed in the process of failure.)

The second volume integral contains the inertial term arising from changes in the equilibrium field

in the elastic medium surrounding the failure zone and corresponds to the fundamental source term that

gives rise to the dynamical response of the medium. Because this term generally represents a relaxation

of stress and a reduction of stored strain energy (which shows up as energy in the radiated elastic wave

field) the elastic waves produced by this source term have been called relaxation source fields (Archam-

beau, 1964, 1968) and used to approximate earthquake radiation fields. This term represents a release of

energy from the entire prestressed medium surrounding the failure zone and, as such, is the fundamental

source of the elastic wave radiation produced by failure. In this regard the gravity term appearing with the

relaxation source term involves the dynamic changes in the gravity field due to density changes in the

medium. As noted earlier and as described in the Appendix 1, it is very small compared to the relaxation

term and can be neglected.

VII. Equivalences: Initial Value (Relaxatioi,) Sources

As was just mentioned, the result given in (32) is slightly different than that obtained in earlier work

using a different method of derivation, which was based on the view that the radiation process associated

with failure in a stressed medium could be described as an initial value problem. Nevertheless the

representation in (32) can be transformed to a form that is nearly identical to that obtained from the ear-

lier analysis.

In order to show this latter "equivalence", consider the integral term involving the inertial source

factor ( a3,(p a,,,u "e)'). We note that the integrand in this integral may be "expanded" to the form:

a"(" ~tuejG- = a, [ a,,u(eY(G-)] _ p a,,ue)' (a G-~)

and that the right side of this identity can be used in the integral instead of the quantity on the left. Thus

the integral term in question can be written as:

Jdt, a, [p atui()] G dV, f dt, f p d 'u dG-dV1 - 1 a,[at.()Gk]dV

V,(t,) - V,(t,) V, 00
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(33)

The first integral term on the right side of this equation is that obtained as the "relaxation source" term in

the initial value formulation, while the second integral is an extra term not explicitly present in the initial

value formulation results. This latter term can, however, be recast into the form that can be combined

with the surface integral terms in (32) by using the transport theorem result in (31). That is, using

p at1 utc) Gl for F in (31) gives:

fdt, ap a,,u(e)'(G-)] dV, = fdt[ f p k kGdV] - fdt f [p a,uOunda

(34)

The time integration in the first integral on the right yields the spatial volume integral evaluated at the

(infinite) time limits. Therefore the first integral on the right is:

d df P 'u (c)'G mdV ~=jP atU (c)rGdVl 0 (35)f dt, WO P t kk tkkl

where the integral vanishes since the equilibrium field is taken to change continuously (the failure zone

growth described by the rupture rate UR is taken to be a continuous function of time) and since:

rn ,u(')" = 0 ; limG (r, t; r1, t1) = 0

Thus, using (35) and (34) in the equation (33) gives:

+_ ~ 4- +

- fdti a [p a,u°) G dV- f dti , p ,,G -,G°dV +fd, f [p u' n'"jdaI

V0,(t,) - v40 - av (t

(36)

Inserting this result in the basic representation integral for the dynamic field, equation (32), there-

fore produces:

4nu'm(r, t) = 4n), + f dt, f ([) +yU]G m - [G -+ P - 1 U Ud) I n~da1

V, 42 P
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+f dt, p auk ('7d1  diJP~)G-1dV, (37)
f O'kdj Id, P

where a factor 41tu)' has been added to both sides of the result in order to put the final equation in a form

comparable to that given by Archambcau and Minster (1978). In this result we have defined relative dis-

placements, measured from the initial state, so that as previously defined

uC)" = 
(e) _ U0)

for the equilibrium fields, and similarly

U- U - 1.10)

for the "total" fields (dynamic plus equilibrium fields). Thus relative fields are measured from the fixed

initial equilibrium state (with displacement u )) and denoted by primes throughout. In view of these

definitions and the relation u = u(d) + u~c ), then

1' = U +(d) I U( ) "

If the start and completion of the failure zone is taken to be the time interval (0, T), then the interval

of time integrations appearing in (37) can be reduced. That is, Uln1 = 0 and ,,u(c) = 0 for t <0 and for t>T

in the integrals, and therefore the time limits on integrals involving these factors may be reduced accord-

ingly. In particular, they become the interval (0, min t, t]), as noted by Archambeau and Minster (1978).

With the convention that the failure zone development occurs over the time interval (0, t), then we also

have that u(C)'= u1) - u1) = 0, for :, < 0; while u(-'= un - u) , for tj > r, with u" denoting the final equili-

brium field.

With the conventions of a specific reference state and a finite source time interval from 0 to t (which

involve no loss of generality), we get similar results from (37) as those given by Archambeau and Min-

ster. In particular, the identical volume integrals corresponding to relaxation effects and gravitational

effects. However, the surface integral in (37), while of the same form as that obtained from the initial
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value formulation, is nevertheless different in detail than that obtained earlier. In particular, the dynamic

stresses and displacements, r&" , - r (e and u4d) a u1 - u (*, appear in the surface integral in (37) while in

the initial value formulation these are (implicitly) replaced by the "relative" stress and displacement com-

ponents ',= -= , - rf and U'k = Uk - u 0). The fields rZ) and uO*) are parametrically time varying during the

failure process (by definition) and the fields r,) and uk) are fixed, time independent, values of equilibrium

stress and displacement before initiation of the failure process.

Considering the simplicity and rigor of the derivations leading to the representations in (32) and

subsequently to (37), it is concluded that (37) is a proper exact representation of an initial value formula-

tion of a spontaneous failure source (earthquake). Thus it appears that the direct initial value fo,.iulation

obtained earlier did not express the surface integral term completely, or at least that this latter formulation

was imprecise as to the definitions of the field variables in the integral terms.

Since the surface integral term represents scattering and absorption of energy at the failure zone

boundary, it may often produce smaller second order effects in the radiation field compared to the relaxa-

tion integral term in (32) or (37). Indeed, the early models generated from the initial value formulation

entirely neglected the surface integral term, along with the very small gravity effects, so that only the

relaxation term in (37) was used to represent the radiation. (The resulting field predictions were called

"transparent source approximations".) Thus, the earlier source models never included the surface integral

contributions, so that in the use of these approximate models the exact nature of contributions from the

surface integral term never arose.. (However, neglect of the surface integral conLnbution was done

without analytical justification, with only intuitive arguments used). The representations in (32) or (37)

can, in any case, be used to accurately determine the nature and size of the true scattering-absorption

effects.

Some concrete justification for neglect of the "scattering-absorption" term has, however, been pro-

vided by Stevens (1981) who compared the "transparent source approximation" for a spherical transition

zone in a prestressed medium with the exact solution for the same problem; with the latter containing the
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proper surface integral scattering term. This comparison showed that the surface integral did indeed con-

tribute small reflection-refraction effects, but that a much larger direct first arrival radiation field was

obtained from the relaxation integral term and that it was a good approximation to the total source radia-

tion field. However, since the source considered by Stevens was an instantaneously created spherical

failure zone, it did not contain the possibilities for absorption of energy as would a spontaneous failure

process. Thus the "absorption" effects at a growing boundary were not included in the comparison.

While these latter effects might in fact "damp out" scattering from the source boundary, so that the two

effects might cancel each other out in part, it cannot be confidently concluded that this would always be

the case. That is, it is not clear that absorption is of the same order as scattering in its effect on the total

radiation field and could, at least in some circumstances and at some points on the failure surface, be a

considerably larger effect and so significantly modify the total field from that predicted by the relaxation

term alone. (For example this might well be the case for radiation contributions from near the -ront of an

advancing thin ellipsoidally shaped failure zone).

Therefore, given all these possibilities, retention of the surface integral contributions in specific

source models seems desirable in most cases of spontaneous failure. Ideally then, models of earthquakes

should include the scattering-absorption surface integral as well as the relaxation term, whether (32) or

(37) is used as a basis for the model predictions.

It is also appropriate to note that the earlier initial value development employed the device of con-

sidering the rupture process as being a series of elemental discontinuous changes in the rupture dimen-

sions, with these changes producing corresponding discontinuous changes in the equilibrium field uoc).

By taking these changes to be of infinitesimal size, and the time interval between them to be of

infinitesimal duration, a limiting process of summing the infinitesimal contributions was used to produce

the effects of continuous failure growth. By contrast, the present approach treats rupture growth and

changes in the equilibrium field to be continuous from the beginning. These two methods should give the

same results, provided the failure process proceeds in a continuous fashion. If, however, there is a finite
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discontinuous change in the rupture rate and a corresponding discontinuity in the equilibrium field, then,

as noted by Stevens (1980, 1981), the integral in equation (35) will not be zero. However, for earth-

quakes which result from spontaneous rapid failure resulting from slow loading, it is not likely that

discontinuous changes in the rupture rate occur, so that the imposition of a continuous time varying rup-

ture rate in the formulation seems justified. Nevertheless, discontinuous changes cannot be ruled out with

absolute certainty. Such cases can, however, be considered in either formulation provided care is taken to

explicitly account for any finite and instantaneous changes in the rupture rate and the equilibrium field

An example of a singular case in which a "supersonic" rupture rate combined with spherical sym-

metry of the developing failure zone produces discontinuous behavior occurs when an explosion is

detonated in a prestressed medium. In this case the failure zone can be completely formed by a super-

sonic shock wave before the medium outside this failure zone can react dynamically, since the shock

velocity (and rupture rate) is taken to be larger, at all points on the spherical failure surface, than the

highest intrinsic velocity of signal propagation in the medium. Consequently the failure zone is, in

essence, formed instantaneously in-so-far as the (causal) relaxation of the equilibrium field external to

this failure zone in concerned. This type of source has been treated in detail by Archambeau (1968, 1972)

as an initial value problem, in the same spirit as in the case of spontaneous failure, but where the discon-

tinuous change in the equilibrium field at the conclusion of the shock induced failure process is accounted

for explicitly from the beginning. Stevens (1980, 1981) obtains the same result using, method similar to

the "time dependent equilibrium method" described here, but tailored to the case of the instantaneous

spherical failure zone.

In the present formulation, if we impose the conditions of this singular problem on the integral

representation in either of the equivalent forms given by (32) and (37) we get the same results obtained by

Archambeau and Stevens; even though the representations in (32) and (37) were derived under the

assumptions of continuous failure zone growth with a finite rupture rate. In particular, taking the time at
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which the source is initiated (ie. t1 = 0) as being the time at which the rupture zone has been formed, so

that Uln- UR = 0 for all times equal or greater than t, = 0, then:

O;t <0

u u(F) - u(')] H(t1) ; tj -> 0

where H (tj) is a step function in time centered at t, = 0. Now both (32) and (37) give:

4,u.,(r, t)= fdti f [ - GmU (d n.da+ f [ a kV (38)

0 av, ,

where u = un - ua)] and where V, is the fixed volume exterior to the failure zone. This is the same

result obtained when the discontinuous effects are explicitly accounted for when deriving the integral

representation. Thus the results in (32) and (37) apply to this discontinuous case as well as to all continu-

ous rupture cases.

VII. Equivalences: "Dislocation-Stress Pulse" Sources

Another form of equivalent representation of the radiation field due to failure in a stressed medium

can be derived from (32) and this representation involves only integrals over the failure boundary. There-

fore it can be compared to kinematical representations (dislocation models) and to the so-called stress

pulse representations that involve only integrals over the failure surface. The approach followed is a sim-

ple generalization of one used by Stevens (1981), which was introduced to demonstrate a similar

equivalence when a failure zone is "instantaneously" created. In this case we want a result similar to

Stevens' result, but for the general case of a finite rupture rate.

To obtain the desired representation we need to transform the relaxation integral term in (32) to a

surface integral taken over the failure boundary. To do so we will need to develop a purely formal

integral identity involving the equilibrium field u(e)' and the dynamical Greens function Gn. This is

achieved by considering the basic differential equations satisfied by these fields, which are:
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dG m- i),(p 
Ik 

- gill,

3 L ,(p dGm") :- 4.A'(r - rI; t- t)

Taking the inner product of the equation for Gm with u e)' on both sides, and integrating over the source

time and spatial coordinates, gives:

fdij[as f d f aIG~ u ti)'dV I = 41tjdt, J (c~)'dVi -= ()

v,(t,) - V,(t,) v141)

Now taking the inner product of the first equation with Gkm on both sides, integrating and subtracting the

result from the previous equation, gives:

4-0 4

Jt,) [aspa,,Gm )]u)'dV,- dtf [G-U C)' - a1'r(e' Gk] dV1  (39)

V,(tV (tO
+ dt, f [p g~e)] Gm"dV, 4

Noting that

G , alu ('e = 4' aG,

due to the symmetry of the elastic tensor Cfj, then it follows that:

Ik k UlU I " k - l mk k k J

Thus the integrand in the second integral on the left in (39) can be replaced with the divergence term in

the equation above and in this form the resulting volume integral can be transformed to a surface integral

using Gauss' theorem. We therefore obtain from (39):

Jdti f a,(p a,,Gn')u (r)dV - 4,ue)' + fdt, [G m'u~ -j t)GT]ndi (40)
--- v,(Q,) ,,

Vfdt f[ pg)]GmdV,
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However, wc note that

Therefore we can replace the volume integral term on the left side of (40) using this last equation. This

produces:

JdtI I [ [ p atuke)j]G dVi = 4tu )' + jdt, J [G ' u T-C)-t'G ]dV1

V,(t,) V ,:,

- Jdt, Ji~[(p @,,G -) u~ (C' (p a U e) ) G2' dV - dt, f p g c)'G 1dVi
V'00, -- v'(Q,

In addition, we can apply the transport theorem to the volume integral involving the time derivative on

the right side of this equation to transform it to L -urface integral. That is, using the transport theorem

given in equation (31), we get:

fdt, f I [(p aG -)uk (p DLu (r)Gkj dV, {V (; "G)u~r)- (pa du(.cr)G,,nIdVij
V,(t,) V'(tO

- f d t , f [[ p atGk-] u ( ) ' - ap "tu(C)Gnlnda

-~ 11 k ]LKJ ,-] Uln 1da,
av,(t,)

where the first term on the right vanishes at the infinite limits; since a,,Gk' =Gk'm=O, for t,-*-)+,; and

u,(e)'= ,,,u()' = 0, for t,-- - oc. Therefore the previous equation can be rewritten in the final desired form as:

4- 4-

Jdti J [a,{p a,,u ( ]G -dVI -4ru-- '+ Jdt, G + pUj a,,Gm P- . p k ) G}ndaj

- dtIfp g(c)'G fld V1  (41)

This integral identity now expresses the relaxation term that appears in (32) in terms of a surface integral

on the failure boundary. Thus (41) can be used to transform the basic representation integral equation in
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(32) into the following equivalent representation:

47tU'm(r, t) = Jdt, {'lk + (P a1 U'k)UiG- - [G - + (p a G-)U1] u'k} nj da,
av,(Q,

+ dtJ p g' G dV1  (42)

where we have a result expressed in terms of the "relative" displacement, stress and gravity fields; that is

u k = 4d) + uk(e)', etc.

Equation (42) has a form that is quite similar to the standard elastodynamic integral equation used

to obtain equivalent dislocation "models" for earthquakes. (If Un, = UR were set to zero in (42), then it

would have the identical form.) However, the integral representation in (42) is actually considerably more

complex than the standard form; in spite of its relatively simple expression.

In order to display this complexity and isolate the various contributions to the radiation field, it is

better to rewrite (42) with the dynamic and equilibrium field explicitly displayed. That is, (42) can be

rewritten in expanded form as:

4tu' (r= t dt, J{ [xra)+ (p (, Ud))U] G- - [G - + (p a, G")U] ud)} n, da

o, f IT ]k+(a, k k
+ fJdti f ['+ (p D, uk(c)u] Gm - [G- + (pa, G-")U ue) n1da) + fdt (p g') G'n dV, (43)

--. ** IV(t - WOt

where the (time varying) equilibrium field contributions are explicitly displayed along with the purely

dynamical parts of the displacement-stress fields. Here, of course, u', u,) + u €' on the left hand side of

the equation, so that the relative displacement field is represented.

The boundary conditions at the failure surface are such that the rupture rate vector U is a function of

both the equilibrium and dynamic fields (see equation 26). Further, from equations (18) and (25), we

have the boundary conditions:
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I nil= 0 ; r c , I
(44)

with UR = Ujnj, corresponding to the rupture rate. Here Vk and tk = Tjnj are the total velocity and traction

vector components, involving the sum of equilibrium and dynamic fields. Consequently, using these con-

ditions together gives:

pUR[Vk]l = - 1t411 (45a)

Thus, on the failure boundary )V1 (ti):

PURV'k + tkd) = pUR'l v'k + (lktd) (45b)

where (1)v'k and (2)td) denote field variables from within the failure zone. Also, the velocity fields both

inside and outside the failure zone have the form v'k = v (d) + v e)'. Thus the boundary condition applying

on the failure surface involves both the equilibrium and dynamic velocity components in the particular

combination expressed by (45). Therefore, it is appropriate to rearrange the terms in (43) so that the

boundary conditions expressed in (45) apply to one of the surface integrals, while the first of the condi-

tions in (44) applies to the other surface integral. That is, rearranging (43) to accommodate the boundary

conditions in sepatc integral terms yields:

4rtu'm(r,') = +d J { [td+pUR a,, u'k] G - [g u () + (PUR a,, Gkm) U'k] dal

+fdt, J G m m e da,+Jdt, J (pg',)GmdV, (46)

where gm denotes the tractions associated with the Greens function G ". In this form the second surface

integral involves only equilibrium field changes and the first boundary condition in (44), pertaining to the

equilibrium field, applies to it. In this regard we note that the first boundary condition in (44) applies to

the equilibrium traction T,(- ) n, = (t[(C) + Tq ))ni. But since If-t n) J 0 also, thcn it lollows that traction
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continuity applies to the relative stresses as well. That is

j[t' nj =

and this relation applies in the second integral. On the other hand, the first surface integral involves

dynamic and equilibrium field changes at the boundary, with the boundary condition (45) applying.

If there were no equilibrium field changes, then the second integral in (46) would vanish, since the

equilibrium stress and displacement fields appearing in (46) are measured relative to the initial state of the

medium. In this case there could be no failure boundary growth, so UR = 0 is implied, and the first

integral would reduce to the standard form with V1 and aV, fixed. Then we would have:

4-u 4

fiu~ fdt k k k a1  fdkp~)~
-- av, V,

and the first integral would represent pure scattering from the fixed surface aV1, while the volume integral

would be non-zero if there were dynamical changes in the gravity field.

Using this limiting case as a guide to the interpretation of (46), we can rewrite this equation as:

4lu'ma(r, t) f dt, J [qd)G--g- 4d)] da 1 +fdt, f U, [(aLu'k) Gm"-(,,G')G k da,f kf k1

- aV,(,) - a)V,(t,)

+ fdtI f [tq )'G J- gk-U(')]da1+ dt! Pg'kG-dVl (47)
aV,(t,) - V(t)

and interpret the first integral as the term due to scattering, the second integral as that due to absorption of

energy along the growing boundary (because of the presence of UR and its dependence on the energy, L,

required for failure) and the third integral as being the equivalent for stress relaxation and energy release

in response to the growing failure boundary. Here again, the last integral is the (generally negligible)

gravity term. Because of the boundary condition in (45), the first and second integrals are actually con-

nected - which would be expcctcd since scattering and absorption at the failure boundary must be inter-

connected, as was noted earlier.
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The field decomposition can be symbolically expressed as:

4n u'(r, t) [I (d)) + I& (Ud + uc))] + 'R (u(6) + l(g') (48)

where the terms on the right denote the scattering (I..), absorption (I.), relaxation (I,) and gravity (Is)

terms in (47). Here only the dependence on the dynamic and/or equilibrium displacements are explicitly

displayed, since the corresponding tractions appear with these displacements in the integral terms and can

be derived from them. (The brackets are used to indicate that the two integral terms I, and I, should be

treated together in solving this equation.)

The relaxation term in equation (47) is now in the form of a surface integral, with the possibility

that it can be viewed in terms of equivalent stress-pulse and dislocation sources. In particular, we can

write this term as:

IR (u(c)) = 4n + u(D] (49a)

with u2) and uT) as displacement fields due to equivalent stress-pulse and dislocation type sources,

defined by

4 1w2) =_fdt, f e)'Gm da,
av,(t,)

.. (49b)

41cug)) = dt, J (e), gmTf da
av,(t,)

These two equivalents are not independent however, since once the equilibrium displacement change u c'

has been determined for the static inclusion problem then t') may be simply derived from it. Further, for

the static inclusion problem involved here, we have

(Ce) -- u (e) + ()

where u(°) and um are the displacement fields with and without a failure zone, while u(C) represents ihc
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change in the initial state due to the presence of the failure zone. Here, u, ) u O' and u,1 are all com-

ponents of biharmonic vector fields. Thus, we already know the spatial form of both uj O and tv ), and that

the coefficients of the biharmonic series for uk( ) , and the corresponding traction t ) , are parametrically

dependent on the source time tj due to the variable dimensions of the failure zone with time. Therefore

the surface integrals in (49) can be analytically evaluated once the failure surface is specified.

These equivalent source integrals can be expressed in more explicitly recognizable form if we use

the definition of u c) " in terms of field changes from the initial state. That is, we can also write (49) as:

4nt u s ) f dtI f [t e -(tS) ) G- da,

-aV,(t,)

(50)
4nt u() = f dif [,) k ] k~a

These two source equivalents, corresponding in sum to the relaxation source field term, may be inter-

preted as a continuously variable "stress-pulse" on the expanding failure surface, with magnitude equal to

the traction "drop" on this surface, plus . continuously expanding closed dislocation surface with a dislo-

cation "offset" equal to the displacement change from the initial state at the failure boundary.

Thus we find that failure induced volumetric stress relaxation and the seismic radiation associated

with it can be accounted for by a superposition of two familiar surface distributed source equivalents;

namely a pair of related stress-pulse and dislocation equivalents. Since the radiation fields produced by

each of these equivalents will be superposed on one another, one can expect a total field having charac-

teristics that may be quite different from either of the equivalents separately. In any case the equivalent

form of the integral equation (47), or alternately as expressed in (48) and (49), constitutes a second

representational form for the elastodynamic radiation produced by failure of a stressed medium and we

see that this equivalent form contains not only combined stress-pulse and dislocation equivalents that

account for volume relaxation cffccts, but boundary absorption-scattering terms that are not usually
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negligible. Therefore it is generally nccessary to solve the integral equation in (47)-(48) to obtain the

total wave radiation field. These applications are investigated in detail by Archambeau and Dilts (1989).

IX. Summary and Conclusions

Examination of some of the previously developed representations for seismic radiation from earth-

quakes, particularly those using the divergence of the mdium stress, or the "stress glut", in the momeni

tensor representations of earthquake radiation fields leads to the conclusion that these representations

have no rational physical basis, nor can they be logically related, in even an approximate sense, to either

the kinematics or dynamics of such a source.

The appropriate representation of the radiation field can, however, be obtained in a quite straightfor-

ward manner by noting that the displacement-stress fields in the medium are a sum of dynamic and equili-

brium components and that the equilibrium field component is time dependent when there is spontaneous

failure within the medium. It is shown that this temporal variation in the equilibrium field, which is due

to creation of a failure boundary within an initially stressed medium, gives rise to an "equivalent force"

term in the equations of motion in the linear zone outside the failure boundary and corresponds to the

inertial effect of .Ahanges in the equilibrium displacement field in the medium surrounding the failure

zone. Further, it is shown that this effect only occurs when the medium is prestressed and a new boun-

dary, enclosing a zone of material altered by the failure process, is created. This inertial term, rather than

a term involving the divergence of the stress in the medium, is the proper "equivalent force term" associ-

ated with an earthquake. However, because the process of failure is spontaneous and depends on the

dynamic radiation field for its continued growth, the near field radiation effects are complicated by energy

absorption and failure boundary scattering that will also manifest themselves in the total radiation field

observed. These latter effects are determined by the boundary conditions, expressing conservation laws,

on the growing failure surface.

In order to treat both the inertial or relaxation effects in the medium surrounding the failure boun-

dary and the boundary scattering and energy absorption associated with failure growth, it is appropriate to
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reformulate the representation of the problem as an integral equation involving both the relaxation effects

and the boundary interaction effects. A Green's function integral equation for the displacement in the

linear region outside the failure zone volume is therefore developed using both the equations of motion

and the boundary conditions on the (growing) failure surface. The resulting integral representation of the

radiation field involves a volume integral accounting for the relaxation of the equilibrium field in the elas-

tic medium surrounding the failure zone (the dominant effect) and surface integral terms that may be indi-

vidually identified as being associated with scattering and energy absorption. Further it is shown that this

"representation theorem" reduces to the classical result in cases when there is no failure at all, or when the

failure process has stopped.

The integral representation obtained is shown to be susceptible to transformation to other forms,

which is useful from a computational point of view as well as being important from a conceptual stand-

point. In particular, it is shown that the integral term representing the relaxation related radiation can be

put in a form identical to that obtained in previous work (eg. Archambeau, 1968; Archambeau and Min-

ster, 1978) which used an initial value approach to generate the representation of the radiation field.

However, it is found that the surface integral terms representing scattering and absorption at the failure

boundary are more precisely defined by the representation obtained here and have a slightly different

form that represents, at the least, a clarification of the earlier results. Alternately the volume integral

representing seismic radiation from relaxation in the medium surrounding the failure zone can be

transformed into surface integrals over the failure zone boundary which can be identified as the superposi-

tion (or sum) of a surface distributed dislocation and a distributed stress-pulse involving only the time

dependent changes in the equilibrium fields at the boundary. These two equivalents are not independent

however, since they are both the result of changes in the equilibrium field from its initial state. (This

latter field can be obtained by standard methods of solution for inclusion problems). The remaining sur-

face integral terms, involving both the dynamic and equilibrium field changes, can again be individually

identified as terms representing scattering and absorption at the failure boundary.
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The integral equation representations describing the failure induced seismic radiation, whether those

containing a volume relaxation term explicitly or that representation with this particular term represented

by the dislocation-stress pulse equivalent, are exact and applicable to any prestress state and source

geometry. Further, the rupture geometry and growth rate are prescribed in the integral representation

vhen the boundary condition involving energy conservation is used.

In some cases it is likely that the surface distributed dislocation-stress pulse equivalent form will be

more convenient from a computational standpoint, but in any case the relaxation integral or the equivalent

dislocation-stress pulse integrals can be evaluated independently from the remainder of the integral cqua-

tion if a failure zone geometry is assumed, since these integrals depend only on the equilibrium field

changes which can be obtained independently through solutions of static inclusion problems. This means

that a moment type expansion can be obtained for the main (relaxation term) contribution to the radiation

field by standard methods and that corrections, or perturbations, to these moment terms can be obtained

by iterative approximation of the scattering-absorption integrals. (These approximations are considered

in detail in a companion study by Archambeau and Dilts, 1989).

Thus the integral representations obtained here form the basis for a moment-tensor representation of

earthquake source that is dynamical in nature and satisfies the required conservation laws at the failure

boundary, as we-' its *i-. 3,, .. . ir linch," -. 'k,. Cw-?aring these results with previous rcprescnta-

tions of earthquake sources, in particular the "stress drop", "stress glut", "boundary stress pulse" or "dislo-

cation" representations, leads us to conclude that none of these "models" is generally appropriate,

although the latter two may be adequate approximations in certain circumstances since they may, for

some failure modes, approximate the appropriate dislocation-stress pulse equivalent defined here.
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Appendix 1 - Magnitude of Seismic Radiation Effects Due to Induced Gravity Field Changes

In the initial state prior to failure, mechanical equilibrium requires:

0) = P , (A- 1 .)

where the gravitational potential 01 (x) and initial density p, (x) satisfy

V2 (DO) -4 n G p, (A-2a.)

or,

Om 4 nG If PlX'I d3x' (A-2b.)

Here rotational forces for the planetary body are neglected as small relative to gravity.

The final state of the medium will be different after the earthquake but will also satisfy equilibrium

conditions and (changed) boundary conditions, so that

ak'tJ = F a, (((A3.

V2 4F=47t GPF (A-3.)

and therefore

ak I T ) Lk PF a, (D"3_ PI a, (1>)

Noting that the left side of this equation involves the stress drop, then

YV akTt PF , - P ,) (A-4.)

where y-' is the spatial source term used by Gilbert to represent the seismic source "associated" with an

earthquake.

Now setting

.= + "f(A-5.)

so that

V2 (D = V2 
1 
+ V2 (80) = 4 ir G (po + 8P)
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then we have immediately:

V2 (80)= 4 nr G (8p) (A-6a.)

Therefore the change in the gravitational potential is given by

84) =4 G G _P d3x' (A-6b.)

Further, by the equation of continuity

8p= -V.(p s) (A-7.)

where s denotes the displacement field produced by the earthquake.

Inserting (A-5.) in (A-4.), and using (A-6b.) and (A-7.) in the result, gives:

y=-4n& pG V -(PIs) d 3X]0,~ ~ X- -V X'

(A-8.)

+ V- (PI s) V PI d 3X + V. (PIs)V V - 'S) d3x,
Ix-X'I JIx-X'I J

Since we are interested in the order of magnitude of the source term -(, then the initial density can be

approximated as a constant, p, in the integrals and in this case (A-8.) has the approximate value:

-4 4GIp2f{( +V.S)V[f V's, d3x'j+(V.s)V I (A-9).•I 1?'= -4Gp (I11) x-x I IxxI )

Noting that the divergence of the displacement field is the dilatation and that it is small compared to

unity, that is observationally of maximum value near 10-3 for earthquakes at near distances, then the fac-

tor (1 + V s) in the first term in (A-9.) can be approximated by unity. Therefore:

Y -4nGP2{[ -xlVS d3x' +(V s)V [ -' dx 1} (A-10.)

To this point the results are general, in that the volume of integration for the gravitational effect can

-60 -



be taken as the entire volume exterior to the failure zone (the volume denoted V1 in the text) or the

volume interior to the failure zone boundary denoted V' in the text, or both. Gilbert's representation

involves an integration over VI, while that of Backus and Mulcahy involves an integration over V'.

The representation of the force equivalent, f, used by Gilbert is given by:

f-Y'vH(t) ; r'EV1

where H(t) is a step function. The designation of the region of applicability, r'c VI, means that this

equivalent is defined over the volume exterior to the failure zone. On the other hand, the "stress glut" for-

mation of Backus and Mulcahy has this same form in the low frequency limit, but with the region of

applicability for the equivalent defined to be over V', the failure zone.

Considering the case appropriate to Gilberts formulation, for which (A-10.) is directly applicable,

and noting that

x4F Y (0 Y1 (0', )r > r

where YJm (0 , p) = Pim(cos 0) e ", with P' the associated Legendre function and where Y , is the complex

conjugate of Y, , then in (A-10.) we have:

r R
v[J x- V i r'2dr'+4t r'dr']= -4i/3r~ r

V, xI 0 4n3r

where i, is the unit vector in the radial direction. Here the integration volume V, has been taken to extend

from the origin to a large distance R fiom the failure zone, as required by the finite dimensions of the

planet. Similarly, the integration has been taken through the failure zone in order to give an upper esti-

mate for the size of this term.

Likewise the magnitude of the other integrals term in (A-10.) can be estimated by noting that the

dilatation 8 = V s is a harmonic function (eg. Love, 1944). For the region outside the failure zone this
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harmonic function is always of the form

0 L~JSn(9 0 (A-Il1.)

where

S.(0 , I) = [mcos m0+ . sin m0 ]P (cos 0)
m=O

with the constants a., 1,m dependent on the failure zone geometry and the initial stress state of the

medium. (See Archambcau, 1964 and 1968 for examples.) Thus, with Ix - x'I r*, the second integral

term in (A-10.) can be expressed as:

Vs d3X, Sn(". 2
Ix- x' r ' sin 'dO d' dr

Now, employing a method due to Love (1944), and applied in similar circumstances by Archambeau

(1968, p. 255) the integration over V, can be rearranged to be performed over surfaces of constant r*

around the "observation point" at r and then (Fnally) over r*, to cover all of V1. We therefore obtain,

after extending the region of integration to include the failure zone region as well as the surrounding

medium:

R

where R > r and Q" is the spherical surface of radius r* = I r - r'j. Since

J S "(0 ' ,') d a , r4  [ -*I - "4 ;r < r }

. (- -+T a' = 0,; r' > r

by an extension of the mean value theorem for harmonic functions (see Archambcau, 1964 for details),
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then

sr( ,1 ,
V" -s d 3X" = 4n f r" dr* -2n r2 E

Consequently the second term in (A-10.) becomes:

*VJ V-s, d'xI 2ntV(r2) 2n r2 V8 +4 nrre8

Now, collecting results from the integral evaluations one has for the equivalent force in (A-10.):

Tv -8nrGp 2 [4/3re r+r2Vel (A-12.)

To directly estimate the contribution of such a source term to the wave field we observe that the

dynamic displacement field, u, is given by:

Uk(X, t) = J d1 f, (x., t) Gk (x , x0 ; t- t) d3xo

with f y1, (xo) H(to) and GI" a tensor Greens function for the medium. Alternately, the dilatation and rota-

tion of the dynamic field is given, in the spectral domain, by the simpler relations (eg. Archambeau,

1968):

X0o(x 41c pv 2  f H (Q c- dt,, rk
lp 0 f, (A-13.)

X (X () 2H fH(t)e_-'-4dt. (V x d .
x ) pv 0 2 X

with infinite space scalar Greens functions used, where r" r - r0 I and k. =o / VP , k, = o / v,. Here yo

denotes the dilatation while X = (XI , X2, X3) denotes the rotation field with Cartesian components Xj.

These physical potentials should be of the order of the strain changes observed from an earthquake if this

source term is the proper equivalent for an eartnquake source. These potentials arc therefore convenient
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for estimaion purposes.

From (A-12.) we have:

V' = -32t 2p2 G r 0+ -r +-1
It 6 dr 3

V Xu -L6 2 P2 G rV 8X 'l= 16t 2 p2G [ a0 e. 1d'3 L'J 3 do In6 0 doe

where 0 has the form given in (A-I 1.). Inserting these relations along with the expansion for 0 into (A-

13.) and introducing the spherical wave the expansions for the scalar Greens functions, of the form

e- = - ik 2 21 + 1) P, (cos y) j, (k r') h,(2) (k r) ;r > r'r 1=0

gives:

R

X. ( 3o) Sn(O ' ) h  (kP r) (n+ 2)(kr') dr'
v 3 n r 6 2 ~'

R

(G)(rw) -8nt
2 pG XSn(O.0))hn2) (kT) f [Lj nkr/dr, 3 r s.0 0 )J.(k, r') dr"

Here S(o, ) denotes a vector with components of the same type as S,(O , 0). In deriving these expres-

sions we have evaluated the transform of the step function H(t) and have used the orthogonality relation

jj P (cosY) Sn (0',')sin0'do4' 7- 4t S(0 i ).
o 0

with -y the angle betwecnd the vectors r and r'. Again the range of integraton has been extended through

the failure zone to the origin, in order to obtain maximum estimates.

In evaluating the radial integrals in the expressions for the wave field induced by gravity changes

we can further simplify results and obtain an accurate estimate by taking the upper limit (R) to be very

large, or infinite, and using the integral relation:

J x"-- J, (a x) dx -1 a F(1/2 v + 1/2a-i
f 1-(] + v/2 -g2)
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valid for - Re u < Re gi < 3/2. We have in this case; for n 2:

n2 P k n-3  ,Fr (5/6 n + 1/2) k n-2
0G (r , (o) !< - I [ S,,(O h(') (kp r) (A-14a.)

V 3 2" F-(n) 2' F(n + 1/2) r

-- 3v 2 2) S.(O) h12 (k. r) (A-14b.)
33 n 21 "F (n + 1/)

The magnitude of the dilatation is larger than, but of the same order as, the components of the rota-

tion vector field. Therefore it is sufficient to consider the size of only X0 1, in (A-14a.), relative to

observed dynamic strain changhes accompanying earthquakes. To obtain a numerical estimate of X,(,) it

is sufficient to consider the (extreme) case in which a fluidized spherical failure volume is produced in an

initially shear stressed medium. In this case we have (Archambeau, 1968; Landau and Lifshitz, 1959) the

specific form for O in (A-I 1.):

8(r) = S2 (0,0)

with

2r
$2(0, 0) F, 2n cos mo + P sin mr P2'(cos 0)

where

(a2.) = 5(1-2cr) R3( 0 TJl° 0 ) ;m=0, 1 2
(7 - o) ,

=5(1 -2 ) R' ( 0 T(' "tf'/2 ) m= 0, 1 .2
g7- 5a) 231

Here "tum denotes an initial homogeneous shear prestress, R0 is the failure zone radius, a is the Poissons

ratio in the medium and t the rigidity. Thus, for this simple case for which we can expect to cbtain the

largest gravity induced radiation effect associated with failure in a stressed medium:

(r) _ 2j) [o [ - ] _+ -.a h 2 (kr) P1(cos0) coso, (r, o) < 32 '5
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At a frequency of 1Hz and at a distance cf about one wavc ingth ai I1lz (ie. abuu5 iij,.) from ie sour(.c

origin, we have:

I °)__32___ __7-'[1_o"1

ve : 3 2120 Jg(A-16.)
Taking a large failure zone such that Ro / vp = 1, so that a distance of one wave length at one hertz is close
to the failure zone boundary, and an initial shear strain such that I 1 I 0 -, which is typical of the

level producing failure (ie. hundred of bars of shear stress or less), then with a= 1/4 and p-5 gm/cm 3 as

representative values, we have

-(G)40o() < 10-1

where this value of I Xo I has the units and the magnitude of the dynamic strain field, in this case near the

failure zone boundary. Similarly, the spectral density of the rotation components in (A-14b.) will be such

that

I : ) I < 10- 1

at 1 Hz and at a distance of one wavelength.

The order of magnitude bounds for these quantities, all of which should be of the order of the spec-

tral levels of the dynamic strain changes in the medium if they are to pioduce the seismic radiation from a

tectonic source, are clearly many orders of magnitude less than those observed. In particular, we can

expect them to be of about the order of (&f- 1) I T1( / 2 .t I near the failure zone, whicL in the present case

implies a level of about 10' at 1 Hz. The values predicted for gravity change induced effects arc there-

fore at least four orders of magnitude too small, as would be expected. The same analysis, when applied

to the effects of gravity changes inside the failure zone alone such as are implicit in the "stress glut" for-

mulation, produce similar, but even smaller, effects.

The origin of the small gravity effect is associated with the small value of the "scismo-gravity cou-

pling" factor, K6 =8t 2 p2 G, appearing in the basic equivalent force field relation of (A-12.). Here,
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G = 6.67x10- 8 (cgs units) and so KG - 10-4 . The coupling factor therefore scales (down) the dynamic field

by about 10-4 and produces the small gravity related effects just described.

By way of contrast and in order to show the role of the coupling more precisely, the magnitude of

the seismic radiation due to stress relaxation around such a spherical failure zone is, to the same approxi-

mation as was used for the gravity effect calculation (see Archambcau, 1972 for exact results):

(a) [5(1(3) i (1) h2)(kpr) P21 (cos 0) cos 4
-6 -~ 2o (f

with similar relations for the rotation field components. At 1 Hz and at one wave length from the source

origin, we have for the magnitude of the dilatation field:

When Ro/v, is near unity then this magnitude estimate , at a distance near the failure boundary and for

a = 1/4, is of the order of the prestrain given by I TI /2 It I. Thus, the dilatation at 1 Hz (and likewise the

rotation field) is of the order of the prestrain, or of the order 10 - 3 , if we use the same prestrain level

assumed in the gravity effect calculation. We also observe that this radiation field has the same spatial

dependence and scales with source dimensions, prestrain and medium properties in the same way as the

gravity induced effect, although its frequency dependence is somewhat different. This is as would be

expected since it i: this direct radiation effect, associated with the relaxation of the prestress field, that

produces the related gravity effect. However, the ratio of the magnitudcs of the two effects is seen to be

such that:

I 0 X,0)I/ .~ I < _ = 10-4

at 1 Hz and at all spatial locations in the medium. A similar relationship holds at other frequencies as

well, as can be verified. However a demonstration at 1 Hz is sufficient. Tllus, the gravity effects are

clearly negligible compared to direct stress relaxation produced radiation.
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